Muon𝑔−2and lepton flavor violation in supersymmetric GUTs

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Mario E. Gómez, Smaragda Lola, Qaisar Shafi, Cem Salih Ün
{"title":"Muon𝑔−2and lepton flavor violation in supersymmetric GUTs","authors":"Mario E. Gómez, Smaragda Lola, Qaisar Shafi, Cem Salih Ün","doi":"10.1103/physrevd.110.095003","DOIUrl":null,"url":null,"abstract":"We present a class of supersymmetric (SUSY) GUT models that can explain the apparent discrepancy between the SM predictions and experimental values of muon <mjx-container ctxtmenu_counter=\"43\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"g minus 2\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑔</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> while providing testable signals for lepton flavor violation in charged lepton decays. Moreover, these models predict LSP neutralino abundance that is compatible with the Planck dark matter bounds. We find that scenarios in the framework of <mjx-container ctxtmenu_counter=\"44\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"28,31,35\" data-semantic-content=\"7,15\" data-semantic- data-semantic-owns=\"28 7 31 15 35\" data-semantic-role=\"multiplication\" data-semantic-speech=\"upper S upper U left parenthesis 4 right parenthesis Subscript c times upper S upper U left parenthesis 2 right parenthesis Subscript upper L times upper S upper U left parenthesis 2 right parenthesis Subscript upper R\" data-semantic-structure=\"(32 (28 0 26 1 27 (6 (23 2 3 4) 5)) 7 (31 8 29 9 30 (14 (24 10 11 12) 13)) 15 (35 16 33 17 34 (22 (25 18 19 20) 21)))\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,6\" data-semantic-content=\"26,27\" data-semantic- data-semantic-owns=\"0 26 1 27 6\" data-semantic-parent=\"32\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"23,5\" data-semantic-fencepointer=\"4\" data-semantic- data-semantic-owns=\"23 5\" data-semantic-parent=\"28\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"23\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"23\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>4</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-parent=\"23\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"32\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"8,9,14\" data-semantic-content=\"29,30\" data-semantic- data-semantic-owns=\"8 29 9 30 14\" data-semantic-parent=\"32\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"31\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"31\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"31\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"31\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"24,13\" data-semantic-fencepointer=\"12\" data-semantic- data-semantic-owns=\"24 13\" data-semantic-parent=\"31\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11\" data-semantic-content=\"10,12\" data-semantic- data-semantic-owns=\"10 11 12\" data-semantic-parent=\"14\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-parent=\"24\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝐿</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"32\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"16,17,22\" data-semantic-content=\"33,34\" data-semantic- data-semantic-owns=\"16 33 17 34 22\" data-semantic-parent=\"32\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"35\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑆</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"35\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"35\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"35\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"25,21\" data-semantic-fencepointer=\"20\" data-semantic- data-semantic-owns=\"25 21\" data-semantic-parent=\"35\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"19\" data-semantic-content=\"18,20\" data-semantic- data-semantic-owns=\"18 19 20\" data-semantic-parent=\"22\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-parent=\"25\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"22\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑅</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> unification, with additional symmetries to explain fermion masses and neutrino oscillations, provide interesting benchmarks for the search of SUSY by correlating a possible manifestation of it in dark matter, rare lepton decays, and LHC signals.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"95 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.095003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We present a class of supersymmetric (SUSY) GUT models that can explain the apparent discrepancy between the SM predictions and experimental values of muon 𝑔2 while providing testable signals for lepton flavor violation in charged lepton decays. Moreover, these models predict LSP neutralino abundance that is compatible with the Planck dark matter bounds. We find that scenarios in the framework of 𝑆𝑈(4)𝑐×𝑆𝑈(2)𝐿×𝑆𝑈(2)𝑅 unification, with additional symmetries to explain fermion masses and neutrino oscillations, provide interesting benchmarks for the search of SUSY by correlating a possible manifestation of it in dark matter, rare lepton decays, and LHC signals.
超对称 GUT 中的μ介子𝑔-2 和轻子味道违反
我们提出了一类超对称(SUSY)GUT 模型,它们可以解释 SM 预测值与μ介子 𝑔-2 实验值之间的明显差异,同时为带电轻子衰变中的轻子味道违反提供了可检验的信号。此外,这些模型预测的 LSP 中性子丰度与普朗克暗物质边界相一致。我们发现,在𝑆𝑈(4)𝑐×𝑆𝑈(2)𝐿×𝑆𝑈(2)𝑅统一框架下的情景,加上解释费米子质量和中微子振荡的附加对称性,通过关联暗物质、稀有轻子衰变和大型强子对撞机信号中可能存在的SUSY表现,为寻找SUSY提供了有趣的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信