Forecasting the constraints on optical selection bias and projection effects of galaxy cluster lensing with multiwavelength data

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Conghao Zhou, Hao-Yi Wu, Andrés N. Salcedo, Sebastian Grandis, Tesla Jeltema, Alexie Leauthaud, Matteo Costanzi, Tomomi Sunayama, David H. Weinberg, Tianyu Zhang, Eduardo Rozo, Chun-Hao To, Sebastian Bocquet, Tamas Varga, Matthew Kwiecien
{"title":"Forecasting the constraints on optical selection bias and projection effects of galaxy cluster lensing with multiwavelength data","authors":"Conghao Zhou, Hao-Yi Wu, Andrés N. Salcedo, Sebastian Grandis, Tesla Jeltema, Alexie Leauthaud, Matteo Costanzi, Tomomi Sunayama, David H. Weinberg, Tianyu Zhang, Eduardo Rozo, Chun-Hao To, Sebastian Bocquet, Tamas Varga, Matthew Kwiecien","doi":"10.1103/physrevd.110.103508","DOIUrl":null,"url":null,"abstract":"Galaxy clusters identified with optical imaging tend to suffer from projection effects, which impact richness (the number of member galaxies in a cluster) and lensing coherently. Physically unassociated galaxies can be mistaken as cluster members due to the significant uncertainties in their line-of-sight distances, thereby changing the observed cluster richness; at the same time, projection effects alter the weak gravitational lensing signals of clusters, leading to a correlated scatter between richness and lensing at a given halo mass. As a result, the lensing signals for optically selected clusters tend to be biased high. This optical selection bias problem of cluster lensing is one of the key challenges in cluster cosmology. Fortunately, recently available multiwavelength observations of clusters provide a solution. We analyze a simulated dataset mimicking the observed lensing of clusters identified by both optical photometry and gas properties, aiming to constrain this selection bias. Assuming a redMaPPer sample from the Dark Energy Survey with South Pole Telescope Sunyaev-Zeldovich effect observations, we find that an overlapping survey of <mjx-container ctxtmenu_counter=\"13\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(9 0 1 2 (5 3 4))\"><mjx-mrow data-semantic-children=\"0,1,2,5\" data-semantic-collapsed=\"(9 (c 6 7 8) 0 1 2 5)\" data-semantic- data-semantic-owns=\"0 1 2 5\" data-semantic-role=\"text\" data-semantic-speech=\"1300 degree squared\" data-semantic-type=\"punctuated\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">3</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c style=\"padding-top: 0.644em;\">0</mjx-c></mjx-mn><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow><mjx-msup data-semantic-children=\"3,4\" data-semantic- data-semantic-owns=\"3 4\" data-semantic-parent=\"9\" data-semantic-role=\"prefix function\" data-semantic-type=\"superscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">d</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">e</mjx-c><mjx-c style=\"padding-top: 0.706em;\">g</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: 0.433em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-mrow></mjx-math></mjx-container>, <mjx-container ctxtmenu_counter=\"14\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,2,4\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"0 1 2 3 4\" data-semantic-role=\"inequality\" data-semantic-speech=\"0.2 less than z less than 0.65\" data-semantic-structure=\"(5 0 1 2 3 4)\" data-semantic-type=\"relseq\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">2</mjx-c></mjx-mn><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑧</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"5\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>&lt;</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"float\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">5</mjx-c></mjx-mn></mjx-math></mjx-container>, can constrain the average lensing bias to an accuracy of 5%. This provides an exciting opportunity for directly constraining optical selection bias from observations. We further show that our approach can remove the optical selection bias from the lensing signal, paving the way for future optical cluster cosmology analyses.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"2 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.103508","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Galaxy clusters identified with optical imaging tend to suffer from projection effects, which impact richness (the number of member galaxies in a cluster) and lensing coherently. Physically unassociated galaxies can be mistaken as cluster members due to the significant uncertainties in their line-of-sight distances, thereby changing the observed cluster richness; at the same time, projection effects alter the weak gravitational lensing signals of clusters, leading to a correlated scatter between richness and lensing at a given halo mass. As a result, the lensing signals for optically selected clusters tend to be biased high. This optical selection bias problem of cluster lensing is one of the key challenges in cluster cosmology. Fortunately, recently available multiwavelength observations of clusters provide a solution. We analyze a simulated dataset mimicking the observed lensing of clusters identified by both optical photometry and gas properties, aiming to constrain this selection bias. Assuming a redMaPPer sample from the Dark Energy Survey with South Pole Telescope Sunyaev-Zeldovich effect observations, we find that an overlapping survey of 1300deg2, 0.2<𝑧<0.65, can constrain the average lensing bias to an accuracy of 5%. This provides an exciting opportunity for directly constraining optical selection bias from observations. We further show that our approach can remove the optical selection bias from the lensing signal, paving the way for future optical cluster cosmology analyses.

Abstract Image

利用多波长数据预测星系团透镜光学选择偏差和投影效应的制约因素
用光学成像技术识别的星系团往往会受到投影效应的影响,而投影效应会影响星系团的丰富度(星系团中成员星系的数量)和透镜相干性。由于视线距离的显著不确定性,物理上不相关的星系可能被误认为是星团成员,从而改变了观测到的星团丰富度;同时,投影效应改变了星团的弱引力透镜信号,导致在给定光环质量下丰富度和透镜之间出现相关的散射。因此,经过光学选择的星团的透镜信号往往偏高。星团透镜的光学选择偏差问题是星团宇宙学的主要挑战之一。幸运的是,最近对星团的多波长观测提供了一个解决方案。我们分析了一个模拟数据集,该数据集模仿了通过光学测光和气体性质识别的观测到的星团透镜现象,旨在限制这种选择偏差。假定从暗能量巡天与南极望远镜 Sunyaev-Zeldovich 效应观测的 redMaPPer 样本中,我们发现一个 1300 deg2、0.2<𝑧<0.65 的重叠巡天可以将平均透镜偏差约束到 5%的精度。这为直接制约观测中的光学选择偏差提供了一个令人兴奋的机会。我们进一步证明,我们的方法可以从透镜信号中去除光学选择偏差,为未来的光学星团宇宙学分析铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信