Thermodynamics of strain engineering in𝑅⁢NiO3(𝑅=Sm,Nd)

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Yin Shi, Long-Qing Chen
{"title":"Thermodynamics of strain engineering in𝑅⁢NiO3(𝑅=Sm,Nd)","authors":"Yin Shi, Long-Qing Chen","doi":"10.1103/physrevb.110.205117","DOIUrl":null,"url":null,"abstract":"Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper S m upper N i upper O 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">m</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.673em;\">i</mjx-c><mjx-c style=\"padding-top: 0.673em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N d upper N i upper O 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">d</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">N</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">O</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> thin films with various orientations, which are consistent with the limited existing experimental measurements. We predict that a shear strain can effectively tune the relative magnitude of the magnetic moments on the two nonequivalent Ni sublattices. Our theory provides an efficient theoretical framework for predicting the thermodynamics of strained nickelates, which will provide guidance for engineering their properties through strains.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"9 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205117","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite rare-earth nickelates are a prototypical class of quantum materials that exhibit rich phase-transition physics with promising applications in neuromorphic computing. Although there is existing experimental evidence demonstrating that strain may strongly influence the phase transitions of nickelate thin films, it would be extremely challenging to experimentally construct temperature-strain phase diagrams for different film orientations to guide applications. Here, we use the Ginzburg-Landau theory to formulate the thermodynamics of strained nickelates and calculate temperature-strain phase diagrams of epitaxial SmNiO3 and NdNiO3 thin films with various orientations, which are consistent with the limited existing experimental measurements. We predict that a shear strain can effectively tune the relative magnitude of the magnetic moments on the two nonequivalent Ni sublattices. Our theory provides an efficient theoretical framework for predicting the thermodynamics of strained nickelates, which will provide guidance for engineering their properties through strains.
𝑅氧化镍(𝑅=Sm,Nd)中的应变工程热力学
透镜稀土镍酸盐是一类典型的量子材料,表现出丰富的相变物理特性,在神经形态计算领域具有广阔的应用前景。尽管已有实验证据表明应变会对镍酸盐薄膜的相变产生强烈影响,但要通过实验构建不同薄膜取向的温度-应变相图来指导应用却极具挑战性。在此,我们利用金兹堡-朗道理论来阐述应变镍酸盐的热力学,并计算了不同取向的 SmNiO3 和 NdNiO3 外延薄膜的温度-应变相图,这与有限的现有实验测量结果是一致的。我们预测,剪切应变可以有效调节两个非等价镍亚晶格上磁矩的相对大小。我们的理论为预测应变镍酸盐的热力学提供了一个有效的理论框架,这将为通过应变来设计其特性提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信