{"title":"Resonant conversion of gravitational waves in neutron star magnetospheres","authors":"Jamie I. McDonald, Sebastian A. R. Ellis","doi":"10.1103/physrevd.110.103003","DOIUrl":null,"url":null,"abstract":"High-frequency gravitational waves are the subject of rapidly growing interest in the theoretical and experimental community. In this work we calculate the resonant conversion of gravitational waves into photons in the magnetospheres of neutron stars via the inverse Gertsenshtein mechanism. The resonance occurs in regions where the vacuum birefringence effects cancel the classical plasma contribution to the photon dispersion relation, leading to a massless photon in the medium which becomes kinematically matched to the graviton. We set limits on the amplitude of a possible stochastic background of gravitational waves using X-ray and IR flux measurements of neutron stars. Using Chandra (2–8 keV) and NuSTAR (3–79 keV) observations of RX J1856.6-3754, we set strain limits <mjx-container ctxtmenu_counter=\"28\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"4,17\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 17\" data-semantic-role=\"equality\" data-semantic-speech=\"h Subscript c Superscript limit Baseline asymptotically equals 10 Superscript negative 26 Baseline en dash 10 Superscript negative 24\" data-semantic-structure=\"(18 (4 (3 0 1) 2) 5 (17 (10 6 (9 7 8)) 11 (16 12 (15 13 14))))\" data-semantic-type=\"relseq\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"18\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.247em; margin-left: 0px;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"limit function\" data-semantic-type=\"function\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">l</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">m</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.271em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≃\" data-semantic-parent=\"18\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"10,16\" data-semantic-content=\"11\" data-semantic- data-semantic-owns=\"10 11 16\" data-semantic-parent=\"18\" data-semantic-role=\"dash\" data-semantic-type=\"infixop\" space=\"4\"><mjx-msup data-semantic-children=\"6,9\" data-semantic- data-semantic-owns=\"6 9\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"8\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"7 8\" data-semantic-parent=\"10\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"9\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">2</mjx-c><mjx-c style=\"padding-top: 0.646em;\">6</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup><mjx-mi data-semantic- data-semantic-operator=\"infixop,–\" data-semantic-parent=\"17\" data-semantic-role=\"dash\" data-semantic-type=\"operator\"><mjx-c>–</mjx-c></mjx-mi><mjx-msup data-semantic-children=\"12,15\" data-semantic- data-semantic-owns=\"12 15\" data-semantic-parent=\"17\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"16\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"14\" data-semantic-content=\"13\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"16\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"15\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">2</mjx-c><mjx-c style=\"padding-top: 0.645em;\">4</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container> in the frequency range <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"19,5,6,21,16,17,18\" data-semantic-collapsed=\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\" data-semantic- data-semantic-owns=\"19 5 6 21 16 17 18\" data-semantic-role=\"text\" data-semantic-speech=\"5 times 10 Superscript 17 Baseline upper H z less than or equivalent to f less than or equivalent to 2 times 10 Superscript 19 Baseline upper H z\" data-semantic-structure=\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 4\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.639em;\">1</mjx-c><mjx-c style=\"padding-top: 0.639em;\">7</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9,20\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"7 8 9 10 20\" data-semantic-parent=\"28\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,15\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"11 12 15\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"20\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"13,14\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi></mjx-math></mjx-container>. Our limits are many orders of magnitude stronger than existing constraints from individual neutron stars at the same frequencies. We also use recent JWST observations of the Magnetar 4U <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"0142 plus 61\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"general:basenumber;clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">4</mjx-c><mjx-c style=\"padding-top: 0.645em;\">2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">6</mjx-c><mjx-c style=\"padding-top: 0.646em;\">1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> in the range <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"19,5,6,21,16,17,18\" data-semantic-collapsed=\"(28 (c 22 23 24 25 26 27) 19 5 6 21 16 17 18)\" data-semantic- data-semantic-owns=\"19 5 6 21 16 17 18\" data-semantic-role=\"text\" data-semantic-speech=\"2.7 times 10 Superscript 13 Baseline upper H z less than or equivalent to f less than or equivalent to 5.9 times 10 Superscript 13 Baseline upper H z\" data-semantic-structure=\"(28 (19 0 1 (4 2 3)) 5 6 (21 7 8 9 10 (20 11 12 (15 13 14))) 16 17 18)\" data-semantic-type=\"punctuated\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"0,4\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 4\" data-semantic-parent=\"28\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"19\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">2</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">.</mjx-c><mjx-c style=\"padding-top: 0.644em;\">7</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"19\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"2,3\" data-semantic- data-semantic-owns=\"2 3\" data-semantic-parent=\"19\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c style=\"padding-top: 0.644em;\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7,9,20\" data-semantic-content=\"8,10\" data-semantic- data-semantic-owns=\"7 8 9 10 20\" data-semantic-parent=\"28\" data-semantic-role=\"inequality\" data-semantic-type=\"relseq\" inline-breaks=\"true\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"21\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" space=\"4\"><mjx-c>𝑓</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≲\" data-semantic-parent=\"21\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\"><mjx-c>≲</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"11,15\" data-semantic-content=\"12\" data-semantic- data-semantic-owns=\"11 12 15\" data-semantic-parent=\"21\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"20\" data-semantic-role=\"float\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">5</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">.</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"20\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"13,14\" data-semantic- data-semantic-owns=\"13 14\" data-semantic-parent=\"20\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"15\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">1</mjx-c><mjx-c style=\"padding-top: 0.644em;\">3</mjx-c></mjx-mn></mjx-script></mjx-msup></mjx-mrow></mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"space\" data-semantic-type=\"text\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 3px;\" variant=\"-explicitFont\"> </mjx-utext></mjx-mtext><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"28\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.657em;\">H</mjx-c><mjx-c style=\"padding-top: 0.657em;\">z</mjx-c></mjx-mi></mjx-math></mjx-container>, setting a limit <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"4,13\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"4 5 13\" data-semantic-role=\"equality\" data-semantic-speech=\"h Subscript normal c Superscript limit Baseline asymptotically equals 5 times 10 Superscript negative 19\" data-semantic-structure=\"(14 (4 (3 0 1) 2) 5 (13 6 7 (12 8 (11 9 10))))\" data-semantic-type=\"relseq\"><mjx-msubsup data-semantic-children=\"0,1,2\" data-semantic-collapsed=\"(4 (3 0 1) 2)\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subsup\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>ℎ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.247em; margin-left: 0px;\"><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"limit function\" data-semantic-type=\"function\" size=\"s\"><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">l</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.706em;\">i</mjx-c><mjx-c style=\"padding-top: 0.706em;\">m</mjx-c></mjx-mi><mjx-spacer style=\"margin-top: 0.267em;\"></mjx-spacer><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>c</mjx-c></mjx-mi></mjx-script></mjx-msubsup><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,≃\" data-semantic-parent=\"14\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>≃</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"6,12\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"6 7 12\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"infixop\" inline-breaks=\"true\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>5</mjx-c></mjx-mn><mjx-break size=\"3\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"13\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>×</mjx-c></mjx-mo><mjx-msup data-semantic-children=\"8,11\" data-semantic- data-semantic-owns=\"8 11\" data-semantic-parent=\"13\" data-semantic-role=\"integer\" data-semantic-type=\"superscript\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"12\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn><mjx-script style=\"vertical-align: 0.369em;\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"10\" data-semantic-content=\"9\" data-semantic- data-semantic-owns=\"9 10\" data-semantic-parent=\"12\" data-semantic-role=\"negative\" data-semantic-type=\"prefixop\" size=\"s\"><mjx-mo data-semantic- data-semantic-operator=\"prefixop,−\" data-semantic-parent=\"11\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"><mjx-c>−</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.646em;\">1</mjx-c><mjx-c style=\"padding-top: 0.646em;\">9</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msup></mjx-mrow></mjx-math></mjx-container>. These constraints are in complementary frequency ranges to laboratory searches with CAST, OSQAR and ALPS II. We expect these limits to be improved both in reach and breadth with a more exhaustive use of telescope data across the full spectrum of frequencies and targets.","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"3 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.110.103003","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
High-frequency gravitational waves are the subject of rapidly growing interest in the theoretical and experimental community. In this work we calculate the resonant conversion of gravitational waves into photons in the magnetospheres of neutron stars via the inverse Gertsenshtein mechanism. The resonance occurs in regions where the vacuum birefringence effects cancel the classical plasma contribution to the photon dispersion relation, leading to a massless photon in the medium which becomes kinematically matched to the graviton. We set limits on the amplitude of a possible stochastic background of gravitational waves using X-ray and IR flux measurements of neutron stars. Using Chandra (2–8 keV) and NuSTAR (3–79 keV) observations of RX J1856.6-3754, we set strain limits ℎlim𝑐≃10−26–10−24 in the frequency range 5×1017Hz≲𝑓≲2×1019Hz. Our limits are many orders of magnitude stronger than existing constraints from individual neutron stars at the same frequencies. We also use recent JWST observations of the Magnetar 4U 0142+61 in the range 2.7×1013Hz≲𝑓≲5.9×1013Hz, setting a limit ℎlimc≃5×10−19. These constraints are in complementary frequency ranges to laboratory searches with CAST, OSQAR and ALPS II. We expect these limits to be improved both in reach and breadth with a more exhaustive use of telescope data across the full spectrum of frequencies and targets.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.