Muhammad Muhammad , Chao Liu , Ge Yang , Chang-Sheng Shao , Lingzi Xiong , Haiqian Xia , Jamshed Iqbal , Jie Zhan , Feng Qu , Qing Huang
{"title":"Early-stage Alzheimer’s disease profiling in blood achieved by multiplexing aptamer-SERS biosensors","authors":"Muhammad Muhammad , Chao Liu , Ge Yang , Chang-Sheng Shao , Lingzi Xiong , Haiqian Xia , Jamshed Iqbal , Jie Zhan , Feng Qu , Qing Huang","doi":"10.1016/j.bios.2024.116907","DOIUrl":null,"url":null,"abstract":"<div><div>Neurological disorders are the second leading cause of death globally, with Alzheimer’s disease (AD) emerging as a significant contributor, responsible for 276 million cases in disability-adjusted life years. Conventional diagnostic methods are often invasive, costly, and place a considerable strain on global healthcare systems. In this study, we presented an innovative and efficient strategy for AD assessment through blood profiling using a multiwell glass chip integrated with aptamer-based surface-enhanced Raman scattering (SERS) biosensors. High-affinity aptamers were selected using capillary electrophoresis-based systematic evolution of ligands by exponential enrichment (CE-SELEX). A mouse brain injury model was employed to systematically investigate biomarkers indicative of physiological, vascular, and cellular damage, such as neurogranin (Nrgn), angiopoietin-2 (Angio-2), PRDX3, lactate dehydrogenase (L-LDH), and τ-441, which were quantified at atto-molar levels in blood samples. Additionally, with the aid of CT-scan imaging, an aptamer-SERS assay was developed to evaluate the dynamic regulation of AD biomarkers. The aptamer-SERS biosensor system was also applied to human samples, demonstrating its capability to multiplex AD biomarkers and establish a time-dependent correlation between percentage biomarker regulation and disease progression. The innovative design, fabrication of aptamer-SERS nanoprobes, and the bio-sensing outcomes illustrate the strong potential of this approach for selective, sensitive, and quantitative early-stage AD diagnosis in clinical applications.</div></div>","PeriodicalId":259,"journal":{"name":"Biosensors and Bioelectronics","volume":"268 ","pages":"Article 116907"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095656632400914X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Neurological disorders are the second leading cause of death globally, with Alzheimer’s disease (AD) emerging as a significant contributor, responsible for 276 million cases in disability-adjusted life years. Conventional diagnostic methods are often invasive, costly, and place a considerable strain on global healthcare systems. In this study, we presented an innovative and efficient strategy for AD assessment through blood profiling using a multiwell glass chip integrated with aptamer-based surface-enhanced Raman scattering (SERS) biosensors. High-affinity aptamers were selected using capillary electrophoresis-based systematic evolution of ligands by exponential enrichment (CE-SELEX). A mouse brain injury model was employed to systematically investigate biomarkers indicative of physiological, vascular, and cellular damage, such as neurogranin (Nrgn), angiopoietin-2 (Angio-2), PRDX3, lactate dehydrogenase (L-LDH), and τ-441, which were quantified at atto-molar levels in blood samples. Additionally, with the aid of CT-scan imaging, an aptamer-SERS assay was developed to evaluate the dynamic regulation of AD biomarkers. The aptamer-SERS biosensor system was also applied to human samples, demonstrating its capability to multiplex AD biomarkers and establish a time-dependent correlation between percentage biomarker regulation and disease progression. The innovative design, fabrication of aptamer-SERS nanoprobes, and the bio-sensing outcomes illustrate the strong potential of this approach for selective, sensitive, and quantitative early-stage AD diagnosis in clinical applications.
期刊介绍:
Biosensors & Bioelectronics, along with its open access companion journal Biosensors & Bioelectronics: X, is the leading international publication in the field of biosensors and bioelectronics. It covers research, design, development, and application of biosensors, which are analytical devices incorporating biological materials with physicochemical transducers. These devices, including sensors, DNA chips, electronic noses, and lab-on-a-chip, produce digital signals proportional to specific analytes. Examples include immunosensors and enzyme-based biosensors, applied in various fields such as medicine, environmental monitoring, and food industry. The journal also focuses on molecular and supramolecular structures for enhancing device performance.