Interplay of symmetry breaking and deconfinement in three-dimensional quantum vertex models

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath
{"title":"Interplay of symmetry breaking and deconfinement in three-dimensional quantum vertex models","authors":"Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath","doi":"10.1103/physrevb.110.l180401","DOIUrl":null,"url":null,"abstract":"We construct a broad class of frustration-free <i>quantum vertex models</i> in <mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 4 3))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1 normal upper D\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-parent=\"6\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>D</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container>) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated for diamond, cubic, and BCC lattices, but hold in general for 3D lattices with even coordination number. The corresponding classical vertex models have a <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> gauge constraint enriched with a <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> global symmetry. We study the interplay between these symmetries by exploiting exact wave function dualities and effective field theories. We find an exact gapless point which by duality is related to the Rokhsar-Kivelson (RK) point of <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 5 (4 1 2 3))\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper U left parenthesis 1 right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" space=\"2\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> spin liquids. At this point, both the symmetry breaking and deconfinement order parameters exhibit long range order. The gapless point is additionally a self-dual point of a second duality that maps the <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> deconfined and <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> symmetry-broken phases to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an unusual intermediate phase where symmetry breaking and deconfinement coexist.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l180401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a broad class of frustration-free quantum vertex models in 3+1 dimensions (3+1D) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated for diamond, cubic, and BCC lattices, but hold in general for 3D lattices with even coordination number. The corresponding classical vertex models have a 2 gauge constraint enriched with a 2 global symmetry. We study the interplay between these symmetries by exploiting exact wave function dualities and effective field theories. We find an exact gapless point which by duality is related to the Rokhsar-Kivelson (RK) point of 𝑈(1) spin liquids. At this point, both the symmetry breaking and deconfinement order parameters exhibit long range order. The gapless point is additionally a self-dual point of a second duality that maps the 2 deconfined and 2 symmetry-broken phases to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an unusual intermediate phase where symmetry breaking and deconfinement coexist.
三维量子顶点模型中对称性破缺与去封闭的相互作用
我们构建了一大类 3+1 维(3+1D)无挫折量子顶点模型,其基态是经典三维顶点模型配置的加权叠加。我们的结果针对钻石晶格、立方晶格和 BCC 晶格进行了说明,但对偶数配位数的三维晶格也普遍适用。相应的经典顶点模型具有富含ℤ2 全局对称性的ℤ2 gauge constraint。我们利用精确波函数对偶性和有效场理论研究了这些对称性之间的相互作用。我们发现了一个精确的无间隙点,通过对偶性,它与𝑈(1) 自旋液体的 Rokhsar-Kivelson (RK) 点有关。在这一点上,对称性破缺和去抵消阶次参数都表现出长程阶次。此外,无间隙点还是第二个对偶性的自偶点,它将ℤ2去约束相和ℤ2对称破缺相相互映射。对于 BCC 晶格顶点模型,我们发现无间隙点接近于一个不寻常的中间阶段,在这个阶段中,对称破缺和去封闭共存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信