Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath
{"title":"Interplay of symmetry breaking and deconfinement in three-dimensional quantum vertex models","authors":"Shankar Balasubramanian, Daniel Bulmash, Victor Galitski, Ashvin Vishwanath","doi":"10.1103/physrevb.110.l180401","DOIUrl":null,"url":null,"abstract":"We construct a broad class of frustration-free <i>quantum vertex models</i> in <mjx-container ctxtmenu_counter=\"17\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"3\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c>1</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> dimensions (<mjx-container ctxtmenu_counter=\"18\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 1 (5 2 4 3))\"><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"addition\" data-semantic-speech=\"3 plus 1 normal upper D\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"6\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>+</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"2,3\" data-semantic-content=\"4\" data-semantic- data-semantic-owns=\"2 4 3\" data-semantic-parent=\"6\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"3\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>D</mjx-c></mjx-mi></mjx-mrow></mjx-mrow></mjx-math></mjx-container>) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated for diamond, cubic, and BCC lattices, but hold in general for 3D lattices with even coordination number. The corresponding classical vertex models have a <mjx-container ctxtmenu_counter=\"19\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> gauge constraint enriched with a <mjx-container ctxtmenu_counter=\"20\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> global symmetry. We study the interplay between these symmetries by exploiting exact wave function dualities and effective field theories. We find an exact gapless point which by duality is related to the Rokhsar-Kivelson (RK) point of <mjx-container ctxtmenu_counter=\"21\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(6 0 5 (4 1 2 3))\"><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"simple function\" data-semantic-speech=\"upper U left parenthesis 1 right parenthesis\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c>𝑈</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" space=\"2\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> spin liquids. At this point, both the symmetry breaking and deconfinement order parameters exhibit long range order. The gapless point is additionally a self-dual point of a second duality that maps the <mjx-container ctxtmenu_counter=\"22\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> deconfined and <mjx-container ctxtmenu_counter=\"23\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"numbersetletter\" data-semantic-speech=\"double struck upper Z 2\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-font=\"double-struck\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"numbersetletter\" data-semantic-type=\"identifier\"><mjx-c>ℤ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> symmetry-broken phases to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an unusual intermediate phase where symmetry breaking and deconfinement coexist.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.l180401","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
We construct a broad class of frustration-free quantum vertex models in 3+1 dimensions (3+1D) whose ground states are weighted superpositions of classical 3D vertex model configurations. Our results are illustrated for diamond, cubic, and BCC lattices, but hold in general for 3D lattices with even coordination number. The corresponding classical vertex models have a ℤ2 gauge constraint enriched with a ℤ2 global symmetry. We study the interplay between these symmetries by exploiting exact wave function dualities and effective field theories. We find an exact gapless point which by duality is related to the Rokhsar-Kivelson (RK) point of 𝑈(1) spin liquids. At this point, both the symmetry breaking and deconfinement order parameters exhibit long range order. The gapless point is additionally a self-dual point of a second duality that maps the ℤ2 deconfined and ℤ2 symmetry-broken phases to one another. For the BCC lattice vertex model, we find that gapless point is proximate to an unusual intermediate phase where symmetry breaking and deconfinement coexist.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter