{"title":"Inducing topological flat bands in bilayer graphene with electric and magnetic superlattices","authors":"Daniel Seleznev, Jennifer Cano, David Vanderbilt","doi":"10.1103/physrevb.110.205115","DOIUrl":null,"url":null,"abstract":"It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice (SL) potential exhibits a variety of intriguing behaviors [Ghorashi <i>et al.</i>, <span>Phys. Rev. Lett.</span> <b>130</b>, 196201 (2023)]. Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the model of Ghorashi <i>et al.</i> to find additional means of inducing flat Chern bands. We focus on fields that vary on length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux. We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric coupling permits control of both SLs, and we study their effects on the band structure of BLG.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"90 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205115","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
It was recently argued that Bernal stacked bilayer graphene (BLG) exposed to a two-dimensional superlattice (SL) potential exhibits a variety of intriguing behaviors [Ghorashi et al., Phys. Rev. Lett.130, 196201 (2023)]. Chief among them is the appearance of flat Chern bands that are favorable to the appearance of fractional Chern insulator states. Here, we explore the application of spatially periodic out-of-plane orbital magnetic fields to the model of Ghorashi et al. to find additional means of inducing flat Chern bands. We focus on fields that vary on length scales much larger than the atomic spacing in BLG, generating what we refer to as magnetic SLs. The magnetic SLs we investigate either introduce no net magnetic flux to the SL unit cell or a single quantum of flux. We find that magnetic SLs acting on their own can induce topological flat bands, but richer behavior, such as the appearance of flat and generic bands with high Chern numbers, can be observed when the magnetic SLs act in conjunction with commensurate electric SLs. Finally, we propose a method of generating unit-flux-quantum magnetic SLs along with concomitant electric SLs. The magnetic SL is generated by periodic arrays of flux vortices originating from type II superconductors, while the electric SL arises due to a magnetic SL-induced charge density on the surface of a magnetoelectric material. Tuning the vortex lattice and the magnetoelectric coupling permits control of both SLs, and we study their effects on the band structure of BLG.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter