Al-N3 Bridge Site Enabling Interlayer Charge Transfer Boosts the Direct Photosynthesis of Hydrogen Peroxide from Water and Air.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Journal of the American Chemical Society Pub Date : 2024-11-20 Epub Date: 2024-11-05 DOI:10.1021/jacs.4c11471
Hao Tan, Peng Zhou, Meixian Liu, Yu Gu, Wenxing Chen, Hongyu Guo, Jiankang Zhang, Kun Yin, Yin Zhou, Changshuai Shang, Qinghua Zhang, Lin Gu, Nian Zhang, Jingyuan Ma, Zhanfeng Zheng, Mingchuan Luo, Shaojun Guo
{"title":"Al-N<sub>3</sub> Bridge Site Enabling Interlayer Charge Transfer Boosts the Direct Photosynthesis of Hydrogen Peroxide from Water and Air.","authors":"Hao Tan, Peng Zhou, Meixian Liu, Yu Gu, Wenxing Chen, Hongyu Guo, Jiankang Zhang, Kun Yin, Yin Zhou, Changshuai Shang, Qinghua Zhang, Lin Gu, Nian Zhang, Jingyuan Ma, Zhanfeng Zheng, Mingchuan Luo, Shaojun Guo","doi":"10.1021/jacs.4c11471","DOIUrl":null,"url":null,"abstract":"<p><p>Manipulating the electronic environment of the reactive center to lower the energy barrier of the rate-determining water oxidation step for boosting the direct generation of H<sub>2</sub>O<sub>2</sub> from water, air, and sunlight is fascinating yet remains a grand challenge. Driven by a first-principles screening across a series of metal single atoms in carbon nitride, we report a class of an Al-N<sub>3</sub> bridge site enabling interlayer charge transfer in carbon nitride nanotubes (CNNT-Al) for the highly efficient photosynthesis of H<sub>2</sub>O<sub>2</sub> directly from water, oxygen, and sunlight. We demonstrate that the interlayered Al-N<sub>3</sub> bridge site in CNNT-Al is able to activate the neighboring surface N atom for promoting the rate-determining step of the two-electron water oxidation to H<sub>2</sub>O<sub>2</sub>. It is also able to act as a bridge for enhancing the vertical interlaminar charge transfer due to the hybridization between the 3s and 3p states of the interstitial Al atom and the conduction band of two adjacent carbon nitride layers. Collectively, these factors lead to a highest photocatalytic mass activity of 1410.2 μmol g<sup>-1</sup> h<sup>-1</sup> (with a photocatalyst concentration of 1 g L<sup>-1</sup>) for direct photosynthesis of H<sub>2</sub>O<sub>2</sub> out of all CN-based photocatalysts and a 7-fold higher solar-to-chemical conversion efficiency (0.73%) compared to that of the natural photosynthesis of typical plants (∼0.1%). Most importantly, the CNNT-Al-based flow reactor can steadily produce H<sub>2</sub>O<sub>2</sub> for 200 h and be directly used for the on-site degradation of organic dye in water. The CNNT-Al-based flow reactor can also kill a 10 times higher concentration of bacteria in deionized water than that in natural water with 100% efficiency, which makes our design economically appealing for practical water treatment.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":"31950-31960"},"PeriodicalIF":14.4000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c11471","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Manipulating the electronic environment of the reactive center to lower the energy barrier of the rate-determining water oxidation step for boosting the direct generation of H2O2 from water, air, and sunlight is fascinating yet remains a grand challenge. Driven by a first-principles screening across a series of metal single atoms in carbon nitride, we report a class of an Al-N3 bridge site enabling interlayer charge transfer in carbon nitride nanotubes (CNNT-Al) for the highly efficient photosynthesis of H2O2 directly from water, oxygen, and sunlight. We demonstrate that the interlayered Al-N3 bridge site in CNNT-Al is able to activate the neighboring surface N atom for promoting the rate-determining step of the two-electron water oxidation to H2O2. It is also able to act as a bridge for enhancing the vertical interlaminar charge transfer due to the hybridization between the 3s and 3p states of the interstitial Al atom and the conduction band of two adjacent carbon nitride layers. Collectively, these factors lead to a highest photocatalytic mass activity of 1410.2 μmol g-1 h-1 (with a photocatalyst concentration of 1 g L-1) for direct photosynthesis of H2O2 out of all CN-based photocatalysts and a 7-fold higher solar-to-chemical conversion efficiency (0.73%) compared to that of the natural photosynthesis of typical plants (∼0.1%). Most importantly, the CNNT-Al-based flow reactor can steadily produce H2O2 for 200 h and be directly used for the on-site degradation of organic dye in water. The CNNT-Al-based flow reactor can also kill a 10 times higher concentration of bacteria in deionized water than that in natural water with 100% efficiency, which makes our design economically appealing for practical water treatment.

Abstract Image

Al-N3 桥接位使层间电荷转移成为可能,从而促进了水和空气中过氧化氢的直接光合作用。
操纵反应中心的电子环境以降低决定水氧化速率步骤的能障,从而促进从水、空气和阳光中直接生成 H2O2,这一点非常吸引人,但仍然是一个巨大的挑战。在对氮化碳中一系列金属单原子进行第一原理筛选的推动下,我们报告了一类能在氮化碳纳米管(CNNT-Al)中实现层间电荷转移的 Al-N3 桥位,从而直接从水、氧气和阳光中高效地进行 H2O2 光合作用。我们证明,CNNT-Al 中的层间 Al-N3 桥位能够激活邻近表面的 N 原子,从而促进双电子水氧化成 H2O2 的速率决定步骤。由于间隙 Al 原子的 3s 和 3p 态与相邻两个氮化碳层的导带之间存在杂化,因此它还能充当加强垂直层间电荷转移的桥梁。综合这些因素,在所有基于 CN 的光催化剂中,H2O2 直接光合作用的光催化质量活性最高,达到 1410.2 μmol g-1 h-1(光催化剂浓度为 1 g L-1),与典型植物的自然光合作用(0.1%∼)相比,太阳能转化为化学能的效率(0.73%)高出 7 倍。最重要的是,基于 CNNT-Al 的流动反应器可在 200 小时内稳定产生 H2O2,并可直接用于现场降解水中的有机染料。基于 CNNT-Al 的流动反应器还能以 100% 的效率杀死去离子水中浓度比天然水高 10 倍的细菌,这使得我们的设计在实际水处理中具有经济吸引力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信