Plaquette-type valence bond solid state in the𝐽1−𝐽2square-lattice Heisenberg model

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Jiale Huang, Xiangjian Qian, Mingpu Qin
{"title":"Plaquette-type valence bond solid state in the𝐽1−𝐽2square-lattice Heisenberg model","authors":"Jiale Huang, Xiangjian Qian, Mingpu Qin","doi":"10.1103/physrevb.110.195111","DOIUrl":null,"url":null,"abstract":"We utilize density matrix renormalization group and fully augmented matrix product states (FAMPS) methods to investigate the valence bond solid (VBS) phase in the <mjx-container ctxtmenu_counter=\"53\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"subtraction\" data-semantic-speech=\"upper J 1 minus upper J 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>1</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> square lattice Heisenberg model. To differentiate between the columnar valence bond solid and plaquette valence bond solid (PVBS) phases, we introduce an anisotropy <mjx-container ctxtmenu_counter=\"54\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Delta Subscript y\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>Δ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑦</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> in the nearest-neighboring coupling in the <mjx-container ctxtmenu_counter=\"55\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"y\" data-semantic-type=\"identifier\"><mjx-c>𝑦</mjx-c></mjx-mi></mjx-math></mjx-container> direction, aiming at detecting the possible spontaneous rotational symmetry breaking in the VBS phase. In the calculations, we push the bond dimension to as large as <mjx-container ctxtmenu_counter=\"56\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 0 1 (6 2 5 4))\"><mjx-mrow data-semantic-children=\"0,6\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 6\" data-semantic-role=\"equality\" data-semantic-speech=\"upper D equals 25 000\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐷</mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"7\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,4\" data-semantic-content=\"5\" data-semantic- data-semantic-owns=\"2 5 4\" data-semantic-parent=\"7\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.644em;\">2</mjx-c><mjx-c style=\"padding-top: 0.644em;\">5</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"6\" data-semantic-role=\"space\" data-semantic-type=\"operator\" style=\"width: 0.16em;\"></mjx-mspace><mjx-mn data-semantic-annotation=\"general:basenumber;clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-math></mjx-container> in FAMPS, simulating systems at a maximum size of <mjx-container ctxtmenu_counter=\"57\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 0 1 2)\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"multiplication\" data-semantic-speech=\"14 times 14\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">1</mjx-c><mjx-c style=\"padding-top: 0.645em;\">4</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,×\" data-semantic-parent=\"3\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" space=\"3\"><mjx-c>×</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"3\"><mjx-c noic=\"true\" style=\"padding-top: 0.645em;\">1</mjx-c><mjx-c style=\"padding-top: 0.645em;\">4</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container>. With a careful extrapolation of the truncation errors and appropriate finite-size scaling, followed by finite <mjx-container ctxtmenu_counter=\"58\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"greekletter\" data-semantic-speech=\"normal upper Delta Subscript y\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"greekletter\" data-semantic-type=\"identifier\"><mjx-c>Δ</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"><mjx-c>𝑦</mjx-c></mjx-mi></mjx-script></mjx-msub></mjx-math></mjx-container> scaling analysis of the VBS dimer order parameters, we identify the VBS phase as a PVBS type, meaning there is no spontaneous rotational symmetry breaking in the VBS phase. This paper not only supports the presence of PVBS order in the <mjx-container ctxtmenu_counter=\"59\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(7 (2 0 1) 3 (6 4 5))\"><mjx-mrow data-semantic-children=\"2,6\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 6\" data-semantic-role=\"subtraction\" data-semantic-speech=\"upper J 1 minus upper J 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>1</mjx-c></mjx-mn></mjx-script></mjx-msub><mjx-mtext data-semantic-annotation=\"general:text\" data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"7\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 7px;\" variant=\"-explicitFont\">−</mjx-utext></mjx-mtext><mjx-msub data-semantic-children=\"4,5\" data-semantic- data-semantic-owns=\"4 5\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐽</mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em; margin-left: -0.063em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container> square lattice Heisenberg model, but also highlights the capabilities of FAMPS in the study of two-dimensional quantum many-body systems.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"87 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.195111","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We utilize density matrix renormalization group and fully augmented matrix product states (FAMPS) methods to investigate the valence bond solid (VBS) phase in the 𝐽1𝐽2 square lattice Heisenberg model. To differentiate between the columnar valence bond solid and plaquette valence bond solid (PVBS) phases, we introduce an anisotropy Δ𝑦 in the nearest-neighboring coupling in the 𝑦 direction, aiming at detecting the possible spontaneous rotational symmetry breaking in the VBS phase. In the calculations, we push the bond dimension to as large as 𝐷=25000 in FAMPS, simulating systems at a maximum size of 14×14. With a careful extrapolation of the truncation errors and appropriate finite-size scaling, followed by finite Δ𝑦 scaling analysis of the VBS dimer order parameters, we identify the VBS phase as a PVBS type, meaning there is no spontaneous rotational symmetry breaking in the VBS phase. This paper not only supports the presence of PVBS order in the 𝐽1𝐽2 square lattice Heisenberg model, but also highlights the capabilities of FAMPS in the study of two-dimensional quantum many-body systems.
𝐽1-𝐽2方格海森堡模型中的普拉克特型价键固态
我们利用密度矩阵重正化群和全增强矩阵积态(FAMPS)方法研究了𝐽1-𝐽2 方晶格海森堡模型中的价键固体(VBS)相。为了区分柱状价键固相和板状价键固相(PVBS),我们在𝑦方向的近邻耦合中引入了各向异性Δ𝑦,目的是探测 VBS 相中可能存在的自发旋转对称性破缺。在计算中,我们将 FAMPS 中的键维度推至𝐷=25000,模拟了最大尺寸为 14×14 的系统。通过对截断误差的仔细推断和适当的有限尺寸缩放,以及对 VBS 二聚体阶次参数的有限 Δ𝑦 缩放分析,我们确定 VBS 相为 PVBS 类型,这意味着在 VBS 相中不存在自发的旋转对称性破缺。本文不仅证明了𝐽1-𝐽2 方晶格海森堡模型中存在 PVBS 有序,而且凸显了 FAMPS 在二维量子多体系统研究中的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信