{"title":"Su-Schrieffer-Heeger-Hubbard model at quarter filling: Effects of magnetic field and nonlocal interactions","authors":"David Mikhail, Stephan Rachel","doi":"10.1103/physrevb.110.205106","DOIUrl":null,"url":null,"abstract":"The interplay and competition of topology and electron–electron interactions have fascinated researchers since the discovery of topological insulators. The Su–Schrieffer–Heeger–Hubbard (SSH-Hubbard) model is a prototypical model which includes both nontrivial topology and interactions. Due to its simplicity, there are several artificial quantum systems which can realize such a model to a good approximation. Here we focus on the quarter-filled case, where interactions and dimerization open a charge gap. In particular, we study the single-particle spectral function for the extended SSH-Hubbard model with magnetic field and explore several parameter limits where effective model descriptions arise. In the strongly dimerized limit, we show that the low-energy excitations of the spectral function resemble a half-filled Hubbard model with effective dimer sites and renormalized couplings. For strong magnetic field and interactions, we find physics akin to the spinless Su–Schrieffer–Heeger model at half filling, featuring a noninteracting topological phase transition. Moreover, in light of the recent realization of this model in quantum dot simulation, we provide evidence for the stability of the topological phase towards moderate nonlocal interactions in the experimentally expected parameter range.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.205106","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
The interplay and competition of topology and electron–electron interactions have fascinated researchers since the discovery of topological insulators. The Su–Schrieffer–Heeger–Hubbard (SSH-Hubbard) model is a prototypical model which includes both nontrivial topology and interactions. Due to its simplicity, there are several artificial quantum systems which can realize such a model to a good approximation. Here we focus on the quarter-filled case, where interactions and dimerization open a charge gap. In particular, we study the single-particle spectral function for the extended SSH-Hubbard model with magnetic field and explore several parameter limits where effective model descriptions arise. In the strongly dimerized limit, we show that the low-energy excitations of the spectral function resemble a half-filled Hubbard model with effective dimer sites and renormalized couplings. For strong magnetic field and interactions, we find physics akin to the spinless Su–Schrieffer–Heeger model at half filling, featuring a noninteracting topological phase transition. Moreover, in light of the recent realization of this model in quantum dot simulation, we provide evidence for the stability of the topological phase towards moderate nonlocal interactions in the experimentally expected parameter range.
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter