Xudong Zhang , Tianwen Huang , Zhuan Ge , Teng Man , Herbert E. Huppert
{"title":"Infiltration characteristics of slurries in porous media based on the coupled Lattice-Boltzmann discrete element method","authors":"Xudong Zhang , Tianwen Huang , Zhuan Ge , Teng Man , Herbert E. Huppert","doi":"10.1016/j.compgeo.2024.106865","DOIUrl":null,"url":null,"abstract":"<div><div>Slurry infiltration clogging commonly occurs in porous media with fine pores. This infiltration leads to changes in the mechanical properties of the matrix, causing challenges such as material drainage difficulties and uneven force distributions. To investigate the clogging behavior of slurries under various pressure conditions, this study employs a simulation approach with corresponding theoretical analyses. Specifically, it utilizes the discrete element method (DEM) in conjunction with the lattice-Boltzmann method (LBM) to simulate the microscopic infiltration test of slurries in porous media. The findings reveal that fine soil particles exhibit greater mobility compared to their larger counterparts. Furthermore, statistical analysis demonstrates that the degree of pore-clogging is not always positively correlated with pressure. Higher pressures can also lead to the unclogging of the pore space. These observations indicate that particle sizes and pressure conditions are key factors influencing the potential for particle clogging. Based on the analysis, a clogging mechanism is proposed to elucidate the dynamics of particles in porous media. This study provides insights into clogging formation within porous media, leading to a better understanding of both slurry filtration in geotechnical engineering and hyporheic exchange phenomena in stream bed ecosystems.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106865"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008048","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Slurry infiltration clogging commonly occurs in porous media with fine pores. This infiltration leads to changes in the mechanical properties of the matrix, causing challenges such as material drainage difficulties and uneven force distributions. To investigate the clogging behavior of slurries under various pressure conditions, this study employs a simulation approach with corresponding theoretical analyses. Specifically, it utilizes the discrete element method (DEM) in conjunction with the lattice-Boltzmann method (LBM) to simulate the microscopic infiltration test of slurries in porous media. The findings reveal that fine soil particles exhibit greater mobility compared to their larger counterparts. Furthermore, statistical analysis demonstrates that the degree of pore-clogging is not always positively correlated with pressure. Higher pressures can also lead to the unclogging of the pore space. These observations indicate that particle sizes and pressure conditions are key factors influencing the potential for particle clogging. Based on the analysis, a clogging mechanism is proposed to elucidate the dynamics of particles in porous media. This study provides insights into clogging formation within porous media, leading to a better understanding of both slurry filtration in geotechnical engineering and hyporheic exchange phenomena in stream bed ecosystems.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.