Efficient enumeration of transversal edge-partitions

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Koki Shinraku, Katsuhisa Yamanaka, Takashi Hirayama
{"title":"Efficient enumeration of transversal edge-partitions","authors":"Koki Shinraku,&nbsp;Katsuhisa Yamanaka,&nbsp;Takashi Hirayama","doi":"10.1016/j.dam.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>An irreducible triangulation is a plane graph such that its outer face is a quadrangle, every inner face is a triangle, and it has no separating triangle. Let <span><math><mi>T</mi></math></span> be an irreducible triangulation with <span><math><mi>n</mi></math></span> vertices. A rectangular dual <span><math><mi>R</mi></math></span> of <span><math><mi>T</mi></math></span> is a dissection of a rectangle into (small) rectangles such that (1) each rectangle of <span><math><mi>R</mi></math></span> corresponds to a vertex of <span><math><mi>T</mi></math></span>, and (2) two rectangles of <span><math><mi>R</mi></math></span> are adjacent if the two corresponding vertices of <span><math><mi>T</mi></math></span> are adjacent. Finding a rectangular dual of a given graph has an application on cartograms and VLSI floor-planning. In this paper, we consider the problem of enumerating all the rectangular duals of a given irreducible triangulation. It is known that the set of rectangular duals of an irreducible triangulation <span><math><mi>T</mi></math></span> one-to-one corresponds to the set of transversal edge-partitions of <span><math><mi>T</mi></math></span>. Hence, in this paper, we design an enumeration algorithm of all the transversal edge-partitions of an irreducible triangulation with <span><math><mi>n</mi></math></span> vertices. The proposed algorithm enumerates them in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>-delay and <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-space after <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mi>n</mi><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>-time preprocessing.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 276-287"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004499","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

An irreducible triangulation is a plane graph such that its outer face is a quadrangle, every inner face is a triangle, and it has no separating triangle. Let T be an irreducible triangulation with n vertices. A rectangular dual R of T is a dissection of a rectangle into (small) rectangles such that (1) each rectangle of R corresponds to a vertex of T, and (2) two rectangles of R are adjacent if the two corresponding vertices of T are adjacent. Finding a rectangular dual of a given graph has an application on cartograms and VLSI floor-planning. In this paper, we consider the problem of enumerating all the rectangular duals of a given irreducible triangulation. It is known that the set of rectangular duals of an irreducible triangulation T one-to-one corresponds to the set of transversal edge-partitions of T. Hence, in this paper, we design an enumeration algorithm of all the transversal edge-partitions of an irreducible triangulation with n vertices. The proposed algorithm enumerates them in O(n)-delay and O(n2)-space after O(nlogn)-time preprocessing.
高效枚举横向边缘分区
不可还原三角形是这样一个平面图形:它的外侧面是一个四边形,每个内侧面都是一个三角形,并且没有分离三角形。设 T 是一个有 n 个顶点的不可还原三角形。T 的矩形对偶 R 是将矩形分割成(小)矩形,这样 (1) R 的每个矩形都对应 T 的一个顶点;(2) 如果 T 的两个对应顶点相邻,则 R 的两个矩形相邻。寻找给定图形的矩形对偶可应用于制图和超大规模集成电路平面规划。在本文中,我们考虑的问题是枚举给定不可还原三角形的所有矩形对偶。众所周知,不可还原三角形 T 的矩形对偶集一一对应于 T 的横向边分区集。因此,在本文中,我们设计了一种枚举具有 n 个顶点的不可还原三角形的所有横向边分区的算法。经过 O(nlogn)-time 的预处理后,所提出的算法能在 O(n)-delay 和 O(n2)-space 内枚举出它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信