Jingjiao Li, Jie Hu, Danni Jin, Haonan Huo, Ning Chen, Jiaqi Lin, Xueguang Lu
{"title":"High-throughput synthesis and optimization of ionizable lipids through A<sup>3</sup> coupling for efficient mRNA delivery.","authors":"Jingjiao Li, Jie Hu, Danni Jin, Haonan Huo, Ning Chen, Jiaqi Lin, Xueguang Lu","doi":"10.1186/s12951-024-02919-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The efficacy of mRNA-based vaccines and therapies relies on lipid nanoparticles (LNPs) as carriers to deliver mRNA into cells. The chemical structure of ionizable lipids (ILs) within LNPs is crucial in determining their delivery efficiency.</p><p><strong>Results: </strong>In this study, we synthesized 623 alkyne-bearing ionizable lipids using the A<sup>3</sup> coupling reaction and assessed their effectiveness in mRNA delivery. ILs with specific structural features-18-carbon alkyl chains, a cis-double bond, and ethanolamine head groups-demonstrated superior mRNA delivery capabilities. Variations in saturation, double bond placement, and chain length correlated with decreased efficacy. Alkynes positioned adjacent to nitrogen atoms in ILs reduced the acid dissociation constant (pKa) of LNPs, thereby hindering mRNA delivery efficiency. Conversion of alkynes to alkanes significantly enhanced mRNA delivery of ILs both in vitro and in vivo. Moreover, combining optimized ILs with cKK-E12 yields synergistic LNPs that showed markedly augmented mRNA expression levels in vivo.</p><p><strong>Conclusions: </strong>Overall, our study provides insights into the structure-function relationships of ILs, providing a foundation for the rational design of ILs to enhance the efficacy of LNPs in mRNA delivery.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"672"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536852/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02919-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The efficacy of mRNA-based vaccines and therapies relies on lipid nanoparticles (LNPs) as carriers to deliver mRNA into cells. The chemical structure of ionizable lipids (ILs) within LNPs is crucial in determining their delivery efficiency.
Results: In this study, we synthesized 623 alkyne-bearing ionizable lipids using the A3 coupling reaction and assessed their effectiveness in mRNA delivery. ILs with specific structural features-18-carbon alkyl chains, a cis-double bond, and ethanolamine head groups-demonstrated superior mRNA delivery capabilities. Variations in saturation, double bond placement, and chain length correlated with decreased efficacy. Alkynes positioned adjacent to nitrogen atoms in ILs reduced the acid dissociation constant (pKa) of LNPs, thereby hindering mRNA delivery efficiency. Conversion of alkynes to alkanes significantly enhanced mRNA delivery of ILs both in vitro and in vivo. Moreover, combining optimized ILs with cKK-E12 yields synergistic LNPs that showed markedly augmented mRNA expression levels in vivo.
Conclusions: Overall, our study provides insights into the structure-function relationships of ILs, providing a foundation for the rational design of ILs to enhance the efficacy of LNPs in mRNA delivery.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.