L. Anitha, J. Sudha, R. Selvamani, Farzad Ebrahami
{"title":"Nonlinear Poro-Visco-Thermal Vibrations in Piezo-Thermoelastic Hygroscopic Sandwich Shells","authors":"L. Anitha, J. Sudha, R. Selvamani, Farzad Ebrahami","doi":"10.1134/S0025654424603744","DOIUrl":null,"url":null,"abstract":"<p>This study utilizes a multiple scales perturbation approach to analyze the nonlinear wave propagation characteristics of a doubly curved sandwich composite piezoelectric shell with a flexible core under hygrothermal conditions. Stress and strain computations for the flexible core and face sheets are conducted employing Reddy’s third-order shear deformation theory (TSDT) and third-order polynomial theory, respectively. The investigation delves into the combined effects of a multilayered shell, flexible core, and magneto-rheological layer (MR) in elucidating the nonlinear behavior of both in-plane and vertical moments within the core. The Halpin-Tsai model is employed to derive the properties of polymer/Carbon nanotube/fiber (PCF) and polymer/Graphene platelet/fiber (PGF) three-phase composite shells. The governing equations for the multiscale shell system are derived using Hamilton’s formulation. The study explores temperature fluctuations, diverse distribution patterns, curvature ratios, and electric fields through numerical analysis, with graphical presentation of results. Previous research has validated the accuracy of these methodologies. Notably, these factors significantly impact the frequency-amplitude curves of the smart structure.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"59 3","pages":"1707 - 1743"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0025654424603744","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilizes a multiple scales perturbation approach to analyze the nonlinear wave propagation characteristics of a doubly curved sandwich composite piezoelectric shell with a flexible core under hygrothermal conditions. Stress and strain computations for the flexible core and face sheets are conducted employing Reddy’s third-order shear deformation theory (TSDT) and third-order polynomial theory, respectively. The investigation delves into the combined effects of a multilayered shell, flexible core, and magneto-rheological layer (MR) in elucidating the nonlinear behavior of both in-plane and vertical moments within the core. The Halpin-Tsai model is employed to derive the properties of polymer/Carbon nanotube/fiber (PCF) and polymer/Graphene platelet/fiber (PGF) three-phase composite shells. The governing equations for the multiscale shell system are derived using Hamilton’s formulation. The study explores temperature fluctuations, diverse distribution patterns, curvature ratios, and electric fields through numerical analysis, with graphical presentation of results. Previous research has validated the accuracy of these methodologies. Notably, these factors significantly impact the frequency-amplitude curves of the smart structure.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.