Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Chen-Yan Zheng, Hai-Long Qian, Cheng Yang, Xiu-Ping Yan
{"title":"Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing.","authors":"Chen-Yan Zheng, Hai-Long Qian, Cheng Yang, Xiu-Ping Yan","doi":"10.1002/smtd.202401120","DOIUrl":null,"url":null,"abstract":"<p><p>Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L<sup>-1</sup>, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401120"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401120","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L-1, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.

设计用于对映选择性传感的自立手性共价有机框架纳米通道膜
纳米通道膜是一种很有前景的对映体选择性传感材料。然而,传统的纳米通道膜很难在选择性和渗透性之间取得平衡。因此,应探索具有高对映选择性和优异渗透性的新型纳米通道膜,用于手性分析。本文报告了不对称催化策略在手性共价有机框架(cCOF)纳米通道膜的界面聚合合成中的应用。手性苯乙胺(S/R-PEA)和 2,4,6-三异丙基氯葡萄糖醇(TP)用于制备手性 TP 单体。然后将 4,4',4″-三氨基三苯胺(TAPA)与手性 TP 通过 C═N 席夫碱反应缩合,得到 cCOF 纳米通道膜。调整 TP 与 S/R-PEA 的摩尔比,使 S/R-PEA 只与 TP 上的醛基结合,或同时与 TP 上的醛基和羟基结合,分别得到手性诱导 COF(cCOF-1)或手性诱导和修饰 COF(cCOF-2)纳米通道膜。制备的 cCOF-2 纳米通道膜对柠檬烯对映体的选择性是 cCOF-1 纳米通道膜的两倍。此外,cCOF-2 纳米通道平台对其他手性分子,如柠檬烯、丙二醇、甲基丁酸、布洛芬和萘普生也表现出优异的传感性能(检测限为 19-42 ng L-1,对映体过量率为 63.6-86.3%)。这项工作为开发基于 cCOF 的纳米通道对映体选择性传感器提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信