Continuum Excitations in a Spin Supersolid on a Triangular Lattice

IF 8.1 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
M. Zhu, V. Romerio, N. Steiger, S. D. Nabi, N. Murai, S. Ohira-Kawamura, K. Yu. Povarov, Y. Skourski, R. Sibille, L. Keller, Z. Yan, S. Gvasaliya, A. Zheludev
{"title":"Continuum Excitations in a Spin Supersolid on a Triangular Lattice","authors":"M. Zhu, V. Romerio, N. Steiger, S. D. Nabi, N. Murai, S. Ohira-Kawamura, K. Yu. Povarov, Y. Skourski, R. Sibille, L. Keller, Z. Yan, S. Gvasaliya, A. Zheludev","doi":"10.1103/physrevlett.133.186704","DOIUrl":null,"url":null,"abstract":"Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis <mjx-container ctxtmenu_counter=\"29\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(5 0 3 1 4 2)\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2\" data-semantic-content=\"3,4\" data-semantic- data-semantic-owns=\"0 3 1 4 2\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper X upper X upper Z\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑋</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑍</mjx-c></mjx-mi></mjx-mrow></mjx-math></mjx-container> triangular lattice magnet <mjx-container ctxtmenu_counter=\"30\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(14 (2 0 1) 12 3 13 (10 (11 4 (7 5 6) 8) 9))\"><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,3,10\" data-semantic-content=\"12,13\" data-semantic- data-semantic-owns=\"2 12 3 13 10\" data-semantic-role=\"implicit\" data-semantic-speech=\"normal upper K 2 upper C o left parenthesis upper S e upper O 3 right parenthesis Subscript 2\" data-semantic-type=\"infixop\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"14\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>K</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"14\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\" space=\"2\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">C</mjx-c><mjx-c style=\"padding-top: 0.669em;\">o</mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"14\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"><mjx-c>⁢</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"11,9\" data-semantic-fencepointer=\"8\" data-semantic- data-semantic-owns=\"11 9\" data-semantic-parent=\"14\" data-semantic-role=\"leftright\" data-semantic-type=\"subscript\" space=\"2\"><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"7\" data-semantic-content=\"4,8\" data-semantic- data-semantic-owns=\"4 7 8\" data-semantic-parent=\"10\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>(</mjx-c></mjx-mo><mjx-msub data-semantic-children=\"5,6\" data-semantic- data-semantic-owns=\"5 6\" data-semantic-parent=\"11\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">S</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.669em;\">e</mjx-c><mjx-c style=\"padding-top: 0.669em;\">O</mjx-c></mjx-mi></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mrow><mjx-mo data-semantic- data-semantic-parent=\"11\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"10\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>2</mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-math></mjx-container>. Despite the presence of quasi-2D “supersolid” magnetic order, the low-energy excitation spectrum contains no sharp modes and is instead a broad and structured multiparticle continuum. Applying a weak magnetic field drives the system into an <mjx-container ctxtmenu_counter=\"31\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math breakable=\"true\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 5\" data-semantic-role=\"equality\" data-semantic-speech=\"m equals 1 divided by 3\" data-semantic-structure=\"(6 0 1 (5 2 3 4))\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝑚</mjx-c></mjx-mi><mjx-break size=\"4\"></mjx-break><mjx-mo data-semantic- data-semantic-operator=\"relseq,=\" data-semantic-parent=\"6\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>=</mjx-c></mjx-mo><mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2,4\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"infixop\" space=\"4\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>1</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"5\" data-semantic-role=\"division\" data-semantic-type=\"operator\"><mjx-c>/</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c>3</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> fractional magnetization plateau phase and restores sharp spin wave modes. To some extent, the behavior at zero field can be understood in terms of spin wave decay. However, the presence of clear excitation minima at the <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper M\" data-semantic-type=\"identifier\"><mjx-c>𝑀</mjx-c></mjx-mi></mjx-math></mjx-container> points of the Brillouin zone suggest that the spinon language may provide a more adequate description, and signals a possible proximity to a Dirac spin liquid state.","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"130 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.186704","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Magnetic, thermodynamic, neutron diffraction and inelastic neutron scattering are used to study spin correlations in the easy-axis 𝑋𝑋𝑍 triangular lattice magnet K2Co(SeO3)2. Despite the presence of quasi-2D “supersolid” magnetic order, the low-energy excitation spectrum contains no sharp modes and is instead a broad and structured multiparticle continuum. Applying a weak magnetic field drives the system into an 𝑚=1/3 fractional magnetization plateau phase and restores sharp spin wave modes. To some extent, the behavior at zero field can be understood in terms of spin wave decay. However, the presence of clear excitation minima at the 𝑀 points of the Brillouin zone suggest that the spinon language may provide a more adequate description, and signals a possible proximity to a Dirac spin liquid state.
三角形晶格上自旋超固体的连续激发
利用磁学、热力学、中子衍射和非弹性中子散射研究了易轴𝑋𝑋𝑍三角晶格磁体 K2Co(SeO3)2中的自旋相关性。尽管存在准二维 "超固 "磁序,但低能激发光谱并不包含尖锐的模式,而是一个宽泛而结构化的多粒子连续体。施加弱磁场会使系统进入 𝑚=1/3 分数磁化高原阶段,并恢复尖锐的自旋波模式。在某种程度上,零磁场时的行为可以用自旋波衰减来理解。然而,在布里渊区的𝑀点存在明显的激发最小值,这表明自旋子语言可能提供了更充分的描述,并预示着可能接近狄拉克自旋液态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信