{"title":"An efficient scheme of calculating nearly singular integrals for the 3D BEM modeling of thin media","authors":"Y.C. Shiah , Jin-Jia Zhan , M.R. Hematiyan","doi":"10.1016/j.enganabound.2024.106005","DOIUrl":null,"url":null,"abstract":"<div><div>For engineering analysis of 3D problems, common difficulty to apply the boundary element method (BEM) is the so called “nearly singular integrals” that arise when the object is thin or the internal points of analysis are close to the boundary. In the present work, the local integration domain is sub-divided into 4 quadrants at the projection of the source point. By use of the FG-Squircular Mapping, the four quadrants are transformed to 4 quarter-discs for the integrations to be performed under the polar coordinates. As such, the singularity strength is reduced by one order. Thus, the Gauss points can be reasonably increased solely for the integration of the radial distance, while the other integration for the angular parameter remains regular. Such treatment greatly enhances the efficiency of the integration computation. To demonstrate the validity of all presented formulations, a few typical examples are presented to calculate the nearly singular boundary integrals for treating 3D problems of heat transfer as well as elastostatics.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106005"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004788","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For engineering analysis of 3D problems, common difficulty to apply the boundary element method (BEM) is the so called “nearly singular integrals” that arise when the object is thin or the internal points of analysis are close to the boundary. In the present work, the local integration domain is sub-divided into 4 quadrants at the projection of the source point. By use of the FG-Squircular Mapping, the four quadrants are transformed to 4 quarter-discs for the integrations to be performed under the polar coordinates. As such, the singularity strength is reduced by one order. Thus, the Gauss points can be reasonably increased solely for the integration of the radial distance, while the other integration for the angular parameter remains regular. Such treatment greatly enhances the efficiency of the integration computation. To demonstrate the validity of all presented formulations, a few typical examples are presented to calculate the nearly singular boundary integrals for treating 3D problems of heat transfer as well as elastostatics.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.