Full-duplex cooperative relaying systems for simultaneous wireless information and power transfer with non-orthogonal multiple access

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Huu Q. Tran , Lam Hoang Kham , Ho Van Khuong
{"title":"Full-duplex cooperative relaying systems for simultaneous wireless information and power transfer with non-orthogonal multiple access","authors":"Huu Q. Tran ,&nbsp;Lam Hoang Kham ,&nbsp;Ho Van Khuong","doi":"10.1016/j.dsp.2024.104817","DOIUrl":null,"url":null,"abstract":"<div><div>In this research, we propose a system model based on cooperative non-orthogonal multiple access (NOMA) for simultaneous wireless information and power transfer (SWIPT) within a full-duplex (FD) communication framework. We investigate two protocols - time switching protocol (TSR) and power splitting protocol (PSR) - designed to accommodate delay-tolerant-transmission (DTT) as well as delay-limited-transmission (DLT), thereby improving data processing and energy harvesting (EH). We present explicit formulas for pivotal performance measures such as energy efficiency, ergodic rate, throughput, and outage probability. These performance measures are thoroughly evaluated in numerous specifications, encompassing inter-user separation, required spectral efficiency, EH efficiency, time and power splitting ratios in moderate-to-high signal-to-noise ratio scenarios. The results expose improved EH efficiency, hence meliorated transmission reliability. Importantly, NOMA in the proposed system model is proved to be considerably better than traditional orthogonal multiple access.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104817"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004421","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this research, we propose a system model based on cooperative non-orthogonal multiple access (NOMA) for simultaneous wireless information and power transfer (SWIPT) within a full-duplex (FD) communication framework. We investigate two protocols - time switching protocol (TSR) and power splitting protocol (PSR) - designed to accommodate delay-tolerant-transmission (DTT) as well as delay-limited-transmission (DLT), thereby improving data processing and energy harvesting (EH). We present explicit formulas for pivotal performance measures such as energy efficiency, ergodic rate, throughput, and outage probability. These performance measures are thoroughly evaluated in numerous specifications, encompassing inter-user separation, required spectral efficiency, EH efficiency, time and power splitting ratios in moderate-to-high signal-to-noise ratio scenarios. The results expose improved EH efficiency, hence meliorated transmission reliability. Importantly, NOMA in the proposed system model is proved to be considerably better than traditional orthogonal multiple access.
利用非正交多址同时进行无线信息和功率传输的全双工合作中继系统
在这项研究中,我们提出了一种基于合作式非正交多址接入(NOMA)的系统模型,用于全双工(FD)通信框架内的同步无线信息和功率传输(SWIPT)。我们研究了两种协议--时间切换协议(TSR)和功率分配协议(PSR)--旨在适应延迟容忍传输(DTT)和延迟限制传输(DLT),从而改进数据处理和能量收集(EH)。我们提出了关键性能指标的明确公式,如能效、遍历率、吞吐量和中断概率。这些性能指标在多种规格中进行了全面评估,包括用户间分离、所需频谱效率、EH 效率、中高信噪比情况下的时间和功率分配比例。结果表明,EH 效率得到了提高,从而改善了传输可靠性。重要的是,事实证明,拟议系统模型中的 NOMA 比传统的正交多址接入要好得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信