An intelligent recognition method of factory personnel behavior based on deep learning

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Qilei Xu , Longen Liu , Fangkun Zhang , Xu Ma , Ke Sun , Fengying Cui
{"title":"An intelligent recognition method of factory personnel behavior based on deep learning","authors":"Qilei Xu ,&nbsp;Longen Liu ,&nbsp;Fangkun Zhang ,&nbsp;Xu Ma ,&nbsp;Ke Sun ,&nbsp;Fengying Cui","doi":"10.1016/j.dsp.2024.104834","DOIUrl":null,"url":null,"abstract":"<div><div>The real-time and accurate recognition of abnormal behavior among factory personnel helps enhance their awareness of hazardous environments, thereby reducing the occurrence of accidents. This paper proposes a behavior recognition network based on an attention mechanism and a high-efficiency convolution module. The Bi-Level Routing Attention was introduced to the backbone network, thus enhancing the attention of the recognition network to the target region effectively. The recognition accuracy was further strengthened by improving the neck network based on the ConvNeXt Block module while reducing the model complexity. Thirteen additional recognition models were constructed to enhance the original network from various perspectives. Subsequently, the mean average precision and detection speed of each model were evaluated. Experimental results demonstrated that the detection accuracy of the target recognition network proposed in this paper has been significantly improved, the detection speed meets the real-time requirements, and the comprehensive performance is the most superior compared with other diverse and improved networks. The proposed recognition model can accurately identify a variety of factory personnel's abnormal behaviors in real-time, and it has practical application significance for the problem of personnel safety identification in the factory.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104834"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004597","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The real-time and accurate recognition of abnormal behavior among factory personnel helps enhance their awareness of hazardous environments, thereby reducing the occurrence of accidents. This paper proposes a behavior recognition network based on an attention mechanism and a high-efficiency convolution module. The Bi-Level Routing Attention was introduced to the backbone network, thus enhancing the attention of the recognition network to the target region effectively. The recognition accuracy was further strengthened by improving the neck network based on the ConvNeXt Block module while reducing the model complexity. Thirteen additional recognition models were constructed to enhance the original network from various perspectives. Subsequently, the mean average precision and detection speed of each model were evaluated. Experimental results demonstrated that the detection accuracy of the target recognition network proposed in this paper has been significantly improved, the detection speed meets the real-time requirements, and the comprehensive performance is the most superior compared with other diverse and improved networks. The proposed recognition model can accurately identify a variety of factory personnel's abnormal behaviors in real-time, and it has practical application significance for the problem of personnel safety identification in the factory.
基于深度学习的工厂人员行为智能识别方法
实时、准确地识别工厂人员的异常行为有助于提高他们对危险环境的认识,从而减少事故的发生。本文提出了一种基于关注机制和高效卷积模块的行为识别网络。在骨干网络中引入了双层路由注意机制,从而有效增强了识别网络对目标区域的注意。通过改进基于 ConvNeXt Block 模块的颈部网络,进一步提高了识别准确率,同时降低了模型的复杂度。另外还构建了 13 个识别模型,从不同角度增强了原始网络。随后,对每个模型的平均精度和检测速度进行了评估。实验结果表明,本文提出的目标识别网络的检测精度有了显著提高,检测速度满足实时性要求,与其他不同的改进网络相比,综合性能最为优越。本文提出的识别模型可以实时准确地识别工厂人员的各种异常行为,对解决工厂人员安全识别问题具有实际应用意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信