{"title":"Synthetic Approaches for the Construction of Chiral Aziridines","authors":"Qing-Hui Liu, Jia-Xuan Liu, Ya-Ping Han, Yong-Min Liang, Li-Zeng Peng","doi":"10.1002/ejoc.202401048","DOIUrl":null,"url":null,"abstract":"Optically active aziridines represent a pivotal class of rigid three-membered nitrogen-heterocyclic compounds found in natural products, pharmaceuticals, agrochemicals, and functional motifs, which have demonstrated outstanding practicability as therapeutic molecular frameworks, versatile synthetic endpoints, and functional materials in both academic and industrial communities. Recent years have witnessed a broad spectrum of prominent breakthroughs in the field of chiral aziridines due to the aziridine-based rigid and three-dimensional pharmacophores, which have resulted in streamlining the drug discovery process. Over the past few decades, particular attention has been directed towards the strategically efficient, versatile, and practical assembly of optically active aziridines. These synthesis approaches have demonstrated great potential in the context of the construction of pharmaceutical molecules, biologically and pharmacologically relevant natural products, and functional materials. In this review, several synthetic strategies for the assembly of chiral aziridines are summarized, which could be divided into five categories; (1) Introduction; (2) Construction of optically active aziridines via reactions of olefines with nitrene sources; (3) Construction of optically active aziridines via reactions of imines with carbenes; (4) Construction of optically active aziridines via reaction of azirines; (5) Construction of optically active aziridines via intramolecular cyclization of amine derivatives.","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":"15 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/ejoc.202401048","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Optically active aziridines represent a pivotal class of rigid three-membered nitrogen-heterocyclic compounds found in natural products, pharmaceuticals, agrochemicals, and functional motifs, which have demonstrated outstanding practicability as therapeutic molecular frameworks, versatile synthetic endpoints, and functional materials in both academic and industrial communities. Recent years have witnessed a broad spectrum of prominent breakthroughs in the field of chiral aziridines due to the aziridine-based rigid and three-dimensional pharmacophores, which have resulted in streamlining the drug discovery process. Over the past few decades, particular attention has been directed towards the strategically efficient, versatile, and practical assembly of optically active aziridines. These synthesis approaches have demonstrated great potential in the context of the construction of pharmaceutical molecules, biologically and pharmacologically relevant natural products, and functional materials. In this review, several synthetic strategies for the assembly of chiral aziridines are summarized, which could be divided into five categories; (1) Introduction; (2) Construction of optically active aziridines via reactions of olefines with nitrene sources; (3) Construction of optically active aziridines via reactions of imines with carbenes; (4) Construction of optically active aziridines via reaction of azirines; (5) Construction of optically active aziridines via intramolecular cyclization of amine derivatives.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.