Unit commitment of power systems considering system inertia constraints and uncertainties

IF 2.6 4区 工程技术 Q3 ENERGY & FUELS
Yuxin Weng, Guangchao Geng, Quanyuan Jiang
{"title":"Unit commitment of power systems considering system inertia constraints and uncertainties","authors":"Yuxin Weng,&nbsp;Guangchao Geng,&nbsp;Quanyuan Jiang","doi":"10.1049/rpg2.13095","DOIUrl":null,"url":null,"abstract":"<p>Large-scale integration of renewable energy into the power grid results in a lack of system inertia, posing challenges to the optimal operation and scheduling of systems considering frequency stability. This article proposes a unit commitment model that considers both inertia constraints and the uncertainty of load and renewable energy. First, the time-domain expression of the system frequency response is calculated based on the aggregated System Frequency Response (SFR) model, considering the system's maximum frequency deviation and the maximum Rate of Change of Frequency (RoCoF) limit. This calculation determines the minimum inertia requirement for the system. Furthermore, inertia constraints suitable for mixed-integer programming model are derived to address the nonlinearity of conventional frequency constraints. Second, considering the uncertainties of load and wind energy from renewable sources, a unit commitment model with inertia constraints is constructed, and a robust method is used to solve the uncertainties. Finally, the accuracy of the proposed inertia constraints and unit commitment model is validated using case study of IEEE standard test cases and a provincial power grid in China.</p>","PeriodicalId":55000,"journal":{"name":"IET Renewable Power Generation","volume":"18 14","pages":"2512-2523"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rpg2.13095","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Renewable Power Generation","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rpg2.13095","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale integration of renewable energy into the power grid results in a lack of system inertia, posing challenges to the optimal operation and scheduling of systems considering frequency stability. This article proposes a unit commitment model that considers both inertia constraints and the uncertainty of load and renewable energy. First, the time-domain expression of the system frequency response is calculated based on the aggregated System Frequency Response (SFR) model, considering the system's maximum frequency deviation and the maximum Rate of Change of Frequency (RoCoF) limit. This calculation determines the minimum inertia requirement for the system. Furthermore, inertia constraints suitable for mixed-integer programming model are derived to address the nonlinearity of conventional frequency constraints. Second, considering the uncertainties of load and wind energy from renewable sources, a unit commitment model with inertia constraints is constructed, and a robust method is used to solve the uncertainties. Finally, the accuracy of the proposed inertia constraints and unit commitment model is validated using case study of IEEE standard test cases and a provincial power grid in China.

Abstract Image

考虑系统惯性约束和不确定性的电力系统单位承诺
可再生能源大规模并入电网导致系统缺乏惯性,给考虑频率稳定性的系统优化运行和调度带来了挑战。本文提出了一种既考虑惯性约束又考虑负荷和可再生能源不确定性的机组承诺模型。首先,在考虑系统最大频率偏差和最大频率变化率(RoCoF)限制的基础上,根据聚合系统频率响应(SFR)模型计算系统频率响应的时域表达式。这一计算确定了系统的最小惯性要求。此外,还推导出了适合混合整数编程模型的惯性约束,以解决传统频率约束的非线性问题。其次,考虑到负荷和可再生能源风能的不确定性,构建了带有惯性约束的机组承诺模型,并使用稳健方法解决不确定性问题。最后,通过对 IEEE 标准测试案例和中国某省级电网的案例研究,验证了所提出的惯性约束和机组承诺模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Renewable Power Generation
IET Renewable Power Generation 工程技术-工程:电子与电气
CiteScore
6.80
自引率
11.50%
发文量
268
审稿时长
6.6 months
期刊介绍: IET Renewable Power Generation (RPG) brings together the topics of renewable energy technology, power generation and systems integration, with techno-economic issues. All renewable energy generation technologies are within the scope of the journal. Specific technology areas covered by the journal include: Wind power technology and systems Photovoltaics Solar thermal power generation Geothermal energy Fuel cells Wave power Marine current energy Biomass conversion and power generation What differentiates RPG from technology specific journals is a concern with power generation and how the characteristics of the different renewable sources affect electrical power conversion, including power electronic design, integration in to power systems, and techno-economic issues. Other technologies that have a direct role in sustainable power generation such as fuel cells and energy storage are also covered, as are system control approaches such as demand side management, which facilitate the integration of renewable sources into power systems, both large and small. The journal provides a forum for the presentation of new research, development and applications of renewable power generation. Demonstrations and experimentally based research are particularly valued, and modelling studies should as far as possible be validated so as to give confidence that the models are representative of real-world behavior. Research that explores issues where the characteristics of the renewable energy source and their control impact on the power conversion is welcome. Papers covering the wider areas of power system control and operation, including scheduling and protection that are central to the challenge of renewable power integration are particularly encouraged. The journal is technology focused covering design, demonstration, modelling and analysis, but papers covering techno-economic issues are also of interest. Papers presenting new modelling and theory are welcome but this must be relevant to real power systems and power generation. Most papers are expected to include significant novelty of approach or application that has general applicability, and where appropriate include experimental results. Critical reviews of relevant topics are also invited and these would be expected to be comprehensive and fully referenced. Current Special Issue. Call for papers: Power Quality and Protection in Renewable Energy Systems and Microgrids - https://digital-library.theiet.org/files/IET_RPG_CFP_PQPRESM.pdf Energy and Rail/Road Transportation Integrated Development - https://digital-library.theiet.org/files/IET_RPG_CFP_ERTID.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信