{"title":"Indirect models for SWCC parameters: reducing prediction uncertainty with machine learning","authors":"Xuzhen He , Guoqing Cai , Daichao Sheng","doi":"10.1016/j.compgeo.2024.106823","DOIUrl":null,"url":null,"abstract":"<div><div>The soil–water characteristic curve (SWCC) is crucial for modelling the transport of water and hazardous materials in the vadose zone. However, measuring SWCC is often cumbersome and time-consuming. This paper introduces indirect models that predict SWCC parameters in probabilistic distributions using easily measurable quantities such as particle-size distributions and porosity. This paper starts with building a joint normal model and the derived conditional probability from it serves as a predictive model. However, this model had extremely high prediction uncertainty. To reduce such uncertainty, various machine-learning techniques were explored, including introducing the dependence of variation scale on predictors, using artificial neural networks (ANN) to model nonlinear dependence, incorporating additional predictive features, and generating a larger dataset. The final machine-learning model successfully reduces prediction variability and has been rigorously tested on a separate set of samples to prevent overfitting.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106823"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24007626","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The soil–water characteristic curve (SWCC) is crucial for modelling the transport of water and hazardous materials in the vadose zone. However, measuring SWCC is often cumbersome and time-consuming. This paper introduces indirect models that predict SWCC parameters in probabilistic distributions using easily measurable quantities such as particle-size distributions and porosity. This paper starts with building a joint normal model and the derived conditional probability from it serves as a predictive model. However, this model had extremely high prediction uncertainty. To reduce such uncertainty, various machine-learning techniques were explored, including introducing the dependence of variation scale on predictors, using artificial neural networks (ANN) to model nonlinear dependence, incorporating additional predictive features, and generating a larger dataset. The final machine-learning model successfully reduces prediction variability and has been rigorously tested on a separate set of samples to prevent overfitting.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.