On the chromatic number of powers of subdivisions of graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Michael Anastos , Simona Boyadzhiyska , Silas Rathke , Juanjo Rué
{"title":"On the chromatic number of powers of subdivisions of graphs","authors":"Michael Anastos ,&nbsp;Simona Boyadzhiyska ,&nbsp;Silas Rathke ,&nbsp;Juanjo Rué","doi":"10.1016/j.dam.2024.10.002","DOIUrl":null,"url":null,"abstract":"<div><div>For a given graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span>, we define its <span><math><mi>n</mi></math></span><em>th subdivision</em> as the graph obtained from <span><math><mi>G</mi></math></span> by replacing every edge by a path of length <span><math><mi>n</mi></math></span>. We also define the <span><math><mi>m</mi></math></span><em>th power</em> of <span><math><mi>G</mi></math></span> as the graph on vertex set <span><math><mi>V</mi></math></span> where we connect every pair of vertices at distance at most <span><math><mi>m</mi></math></span> in <span><math><mi>G</mi></math></span>. In this paper, we study the chromatic number of powers of subdivisions of graphs and resolve the case <span><math><mrow><mi>m</mi><mo>=</mo><mi>n</mi></mrow></math></span> asymptotically. In particular, our result confirms a conjecture of Mozafari-Nia and Iradmusa in the case <span><math><mrow><mi>m</mi><mo>=</mo><mi>n</mi><mo>=</mo><mn>3</mn></mrow></math></span> in a strong sense.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 506-511"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004323","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a given graph G=(V,E), we define its nth subdivision as the graph obtained from G by replacing every edge by a path of length n. We also define the mth power of G as the graph on vertex set V where we connect every pair of vertices at distance at most m in G. In this paper, we study the chromatic number of powers of subdivisions of graphs and resolve the case m=n asymptotically. In particular, our result confirms a conjecture of Mozafari-Nia and Iradmusa in the case m=n=3 in a strong sense.
论图形细分幂的色度数
对于给定的图 G=(V,E),我们将其第 n 次细分定义为将每条边替换为长度为 n 的路径后从 G 中得到的图。我们还将 G 的第 m 次幂定义为顶点集 V 上的图,在该图中,我们以最多 m 的距离连接 G 中的每对顶点。特别是,我们的结果在强意义上证实了 Mozafari-Nia 和 Iradmusa 在 m=n=3 情况下的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信