{"title":"Field ionization intensity used to measure local pressure in gas flows","authors":"Felix Sharipov , Irina Graur , Evelyne Salançon","doi":"10.1016/j.vacuum.2024.113728","DOIUrl":null,"url":null,"abstract":"<div><div>A coaxial ion source produces an ion beam via field effect in a gas flow through a coaxial microchannel structure. Measuring the intensity of ion emission under an electric voltage condition reveals the pressure at the tip of the coaxial structure, where ionization occurs. The spatial resolution of the measurements is defined by the volume into which the position of the tip fits, here estimated as a cube with an edge of 10 <span><math><mi>μ</mi></math></span>m. The pressure at the tip is also obtained analytically as a function of the throughput through the coaxial structure. The theoretical and experimental pressure values reported in the present work are in agreement between them within the geometric uncertainties of the coaxial structure itself.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113728"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24007747","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A coaxial ion source produces an ion beam via field effect in a gas flow through a coaxial microchannel structure. Measuring the intensity of ion emission under an electric voltage condition reveals the pressure at the tip of the coaxial structure, where ionization occurs. The spatial resolution of the measurements is defined by the volume into which the position of the tip fits, here estimated as a cube with an edge of 10 m. The pressure at the tip is also obtained analytically as a function of the throughput through the coaxial structure. The theoretical and experimental pressure values reported in the present work are in agreement between them within the geometric uncertainties of the coaxial structure itself.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.