{"title":"Influence of discharge power and grid structure on an RF-biased ion thruster","authors":"Jinyuan Yang, Siyuan Zhang, Yuliang Fu, Liwei Zhang, Chenxi Feng, Haolin Li, Guanjun Zhang, Anbang Sun","doi":"10.1016/j.vacuum.2024.113729","DOIUrl":null,"url":null,"abstract":"<div><div>The RF-biased ion thruster applies radio-frequency (RF) power on the grid system, which can extract both ions and electrons to achieve self-neutralization. The performance of the RF-biased ion thruster is significantly influenced by the structure of the grid system and the discharge power since these factors play a crucial role in determining the focusing condition of the grid system. In this paper, the influence of discharge power and grid structure on the RF-biased ion thruster’s voltage parameters is investigated. According to the screen grid voltage waveform results under different discharge power and grid structure, the relationship between self-bias voltage and RF voltage is acquired. In order to explain the different waveform variations, the impacts of the direct impingement current as well as the oscillation of the upstream sheath voltage are considered in the theoretical calculation for self-bias voltage. It has been found that the opposite oscillation of the upstream sheath voltage is the primary reason for the decline in self-bias voltage. Moreover, the mechanisms through which discharge power and grid structure influence the self-bias voltage are explained in terms of their impact on upstream sheath oscillation. Several methods for increasing the self-bias voltage in RF-biased ion thrusters are also proposed.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113729"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24007759","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The RF-biased ion thruster applies radio-frequency (RF) power on the grid system, which can extract both ions and electrons to achieve self-neutralization. The performance of the RF-biased ion thruster is significantly influenced by the structure of the grid system and the discharge power since these factors play a crucial role in determining the focusing condition of the grid system. In this paper, the influence of discharge power and grid structure on the RF-biased ion thruster’s voltage parameters is investigated. According to the screen grid voltage waveform results under different discharge power and grid structure, the relationship between self-bias voltage and RF voltage is acquired. In order to explain the different waveform variations, the impacts of the direct impingement current as well as the oscillation of the upstream sheath voltage are considered in the theoretical calculation for self-bias voltage. It has been found that the opposite oscillation of the upstream sheath voltage is the primary reason for the decline in self-bias voltage. Moreover, the mechanisms through which discharge power and grid structure influence the self-bias voltage are explained in terms of their impact on upstream sheath oscillation. Several methods for increasing the self-bias voltage in RF-biased ion thrusters are also proposed.
期刊介绍:
Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences.
A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below.
The scope of the journal includes:
1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes).
2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis.
3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification.
4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.