Yanxi Yang , Junbang Wang , Xiujuan Zhang , Hui Ye , Bin Yuan , Alan E. Watson
{"title":"Interannual moisture variability on the Qinghai Plateau: Trends, patterns, and implications","authors":"Yanxi Yang , Junbang Wang , Xiujuan Zhang , Hui Ye , Bin Yuan , Alan E. Watson","doi":"10.1016/j.jhydrol.2024.132074","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating surface dry-wet patterns on the Qinghai Plateau (QP) is crucial for water allocation, ecological sustainability, and climate variability adaptation strategies. Existing discrepancies in the QP dry-wet trends and distribution characteristics underscored the need for a more refined analysis. This study utilized the Thornthwaite Moisture Index (IM) to quantify changes in surface dryness and wetness under prevailing climatic conditions. Linear trend regression and ensemble empirical mode decomposition (EEMD) were applied to study the dynamic and periodic characteristics of the QP from 1980 to 2018.</div><div>Our findings revealed a decrease from southeast to northwest in IM, with the semi-arid and sub-humid transition line aligning closely with the 400 mm isohyet. The dry-wet transition line exhibited a northwestward trend over the past four decades. Possibly influenced by monsoon circulation and El Niño-Southern Oscillation (ENSO), the annual IM displayed a quasi-cycle of 3 to 5 years, manifested by a dry period (1990–2004) and a wet period (2005–2012). However, spatial differences existed, challenging the universality of the “Dry gets Drier and Wet gets Wetter (DDWW)” pattern. Precipitation (PRCP) changes could predict over 90 % of IM spatiotemporal variations. Additionally, the IM response to Average Temperature (TAVG) exhibited an inverted U-shaped curve, with a boundary (−3.8 °C) below which cooler regions became wetter and above which they became drier. The observed warming and precipitation shifts suggested that continued warming could lead to warmer and wetter climates, potentially causing ecological and environmental problems. Therefore, examining the surface moisture budget is of critical scientific and practical significance, in order to provide a decision-making basis for mitigating and adapting to climate change.</div></div>","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"645 ","pages":"Article 132074"},"PeriodicalIF":5.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022169424014707","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating surface dry-wet patterns on the Qinghai Plateau (QP) is crucial for water allocation, ecological sustainability, and climate variability adaptation strategies. Existing discrepancies in the QP dry-wet trends and distribution characteristics underscored the need for a more refined analysis. This study utilized the Thornthwaite Moisture Index (IM) to quantify changes in surface dryness and wetness under prevailing climatic conditions. Linear trend regression and ensemble empirical mode decomposition (EEMD) were applied to study the dynamic and periodic characteristics of the QP from 1980 to 2018.
Our findings revealed a decrease from southeast to northwest in IM, with the semi-arid and sub-humid transition line aligning closely with the 400 mm isohyet. The dry-wet transition line exhibited a northwestward trend over the past four decades. Possibly influenced by monsoon circulation and El Niño-Southern Oscillation (ENSO), the annual IM displayed a quasi-cycle of 3 to 5 years, manifested by a dry period (1990–2004) and a wet period (2005–2012). However, spatial differences existed, challenging the universality of the “Dry gets Drier and Wet gets Wetter (DDWW)” pattern. Precipitation (PRCP) changes could predict over 90 % of IM spatiotemporal variations. Additionally, the IM response to Average Temperature (TAVG) exhibited an inverted U-shaped curve, with a boundary (−3.8 °C) below which cooler regions became wetter and above which they became drier. The observed warming and precipitation shifts suggested that continued warming could lead to warmer and wetter climates, potentially causing ecological and environmental problems. Therefore, examining the surface moisture budget is of critical scientific and practical significance, in order to provide a decision-making basis for mitigating and adapting to climate change.
期刊介绍:
The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.