Wenqu Chen, Danling Liao, Yuyang Deng, Jianzhang Hu
{"title":"Development of a transformer-based deep learning algorithm for diabetic peripheral neuropathy classification using corneal confocal microscopy images.","authors":"Wenqu Chen, Danling Liao, Yuyang Deng, Jianzhang Hu","doi":"10.3389/fcell.2024.1484329","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetic peripheral neuropathy (DPN) is common and can go unnoticed until it is firmly developed. This study aims to establish a transformer-based deep learning algorithm (DLA) to classify corneal confocal microscopy (CCM) images, identifying DPN in diabetic patients.</p><p><strong>Methods: </strong>Our classification model differs from traditional convolutional neural networks (CNNs) using a Swin transformer network with a hierarchical architecture backbone. Participants included those with (DPN+, n = 57) or without (DPN-, n = 37) DPN as determined by the updated Toronto consensus criteria. The CCM image dataset (consisting of 570 DPN+ and 370 DPN- images, with five images selected from each participant's left and right eyes) was randomly divided into training, validation, and test subsets at a 7:1:2 ratio, considering individual participants. The effectiveness of the algorithm was assessed using diagnostic accuracy measures, such as sensitivity, specificity, and accuracy, in conjunction with Grad-CAM visualization techniques to interpret the model's decisions.</p><p><strong>Results: </strong>In the DPN + group (n = 12), the transformer model successfully predicted all participants, while in the DPN- group (n = 7), one participant was misclassified as DPN+, with an area under the curve (AUC) of 0.9405 (95% CI 0.8166, 1.0000). Among the DPN + images (n = 120), 117 were correctly classified, and among the DPN- images (n = 70), 49 were correctly classified, with an AUC of 0.8996 (95% CI 0.8502, 0.9491). For single-image predictions, the transformer model achieved a superior AUC relative to the ResNet50 model (0.8761, 95% CI 0.8155, 0.9366), the Inception_v3 model (0.8802, 95% CI 0.8231, 0.9374), and the DenseNet121 model (0.8965, 95% CI 0.8438, 0.9491).</p><p><strong>Conclusion: </strong>Transformer-based networks outperform CNN-based networks in rapid binary DPN classification. Transformer-based DLAs have clinical DPN screening potential.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1484329"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11513358/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1484329","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Diabetic peripheral neuropathy (DPN) is common and can go unnoticed until it is firmly developed. This study aims to establish a transformer-based deep learning algorithm (DLA) to classify corneal confocal microscopy (CCM) images, identifying DPN in diabetic patients.
Methods: Our classification model differs from traditional convolutional neural networks (CNNs) using a Swin transformer network with a hierarchical architecture backbone. Participants included those with (DPN+, n = 57) or without (DPN-, n = 37) DPN as determined by the updated Toronto consensus criteria. The CCM image dataset (consisting of 570 DPN+ and 370 DPN- images, with five images selected from each participant's left and right eyes) was randomly divided into training, validation, and test subsets at a 7:1:2 ratio, considering individual participants. The effectiveness of the algorithm was assessed using diagnostic accuracy measures, such as sensitivity, specificity, and accuracy, in conjunction with Grad-CAM visualization techniques to interpret the model's decisions.
Results: In the DPN + group (n = 12), the transformer model successfully predicted all participants, while in the DPN- group (n = 7), one participant was misclassified as DPN+, with an area under the curve (AUC) of 0.9405 (95% CI 0.8166, 1.0000). Among the DPN + images (n = 120), 117 were correctly classified, and among the DPN- images (n = 70), 49 were correctly classified, with an AUC of 0.8996 (95% CI 0.8502, 0.9491). For single-image predictions, the transformer model achieved a superior AUC relative to the ResNet50 model (0.8761, 95% CI 0.8155, 0.9366), the Inception_v3 model (0.8802, 95% CI 0.8231, 0.9374), and the DenseNet121 model (0.8965, 95% CI 0.8438, 0.9491).
Conclusion: Transformer-based networks outperform CNN-based networks in rapid binary DPN classification. Transformer-based DLAs have clinical DPN screening potential.
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.