Design Guidelines of Multibridge Channel-Ferroelectric FET for 3-nm Node and Beyond

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Kynghwan Lee;Jungpyo Hong;Bong Jin Kuh;Daewon Ha;Sangjin Hyun;Sujin Ahn;Jaihyuk Song
{"title":"Design Guidelines of Multibridge Channel-Ferroelectric FET for 3-nm Node and Beyond","authors":"Kynghwan Lee;Jungpyo Hong;Bong Jin Kuh;Daewon Ha;Sangjin Hyun;Sujin Ahn;Jaihyuk Song","doi":"10.1109/TED.2024.3469908","DOIUrl":null,"url":null,"abstract":"Multibridge channel-ferroelectric field-effect transistor (MBC-FeFET) with metal-ferroelectric-metal-insulator-silicon (MFMIS) gate-stack is an advanced noble memory device, which is compatible with a 3-nm node technology logic device. Thanks to the wide effective channel width of the device’s stacked nanosheet (NS), the capacitance ratio of the interfacial layer (IL) and ferroelectric layer (\n<inline-formula> <tex-math>${C}_{\\text {IL}}$ </tex-math></inline-formula>\n/\n<inline-formula> <tex-math>${C}_{\\text {FE}}$ </tex-math></inline-formula>\n) can be maximized without area penalty, significantly improving memory window (MW) and endurance characteristics. In this work, we developed analytical compact models of memory characteristics for MFMIS gate-stack-based MBC-FeFET. Also, using this model, the gate-stack design guidelines were presented. As a result, the MW becomes three times larger, and the electric field in the IL layer (\n<inline-formula> <tex-math>${E}_{\\text {IL}}$ </tex-math></inline-formula>\n) becomes 0.17 times smaller after optimization. This is 21 times larger MW compared to a planar FeFET with initial gate-stack parameters applied.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"71 11","pages":"6719-6724"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10709652/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Multibridge channel-ferroelectric field-effect transistor (MBC-FeFET) with metal-ferroelectric-metal-insulator-silicon (MFMIS) gate-stack is an advanced noble memory device, which is compatible with a 3-nm node technology logic device. Thanks to the wide effective channel width of the device’s stacked nanosheet (NS), the capacitance ratio of the interfacial layer (IL) and ferroelectric layer ( ${C}_{\text {IL}}$ / ${C}_{\text {FE}}$ ) can be maximized without area penalty, significantly improving memory window (MW) and endurance characteristics. In this work, we developed analytical compact models of memory characteristics for MFMIS gate-stack-based MBC-FeFET. Also, using this model, the gate-stack design guidelines were presented. As a result, the MW becomes three times larger, and the electric field in the IL layer ( ${E}_{\text {IL}}$ ) becomes 0.17 times smaller after optimization. This is 21 times larger MW compared to a planar FeFET with initial gate-stack parameters applied.
3 纳米及更高节点的多桥沟道费电场效应晶体管设计指南
采用金属-铁电-金属-绝缘体-硅(MFMIS)栅叠层的多桥沟道铁电场效应晶体管(MBC-FeFET)是一种先进的贵族存储器件,可与 3 纳米节点技术的逻辑器件兼容。由于该器件的叠层纳米片(NS)具有较宽的有效沟道宽度,因此可以在不增加面积的情况下最大限度地提高界面层(IL)和铁电层的电容比(${C}_{text {IL}}$ / ${C}_{\text {FE}}$),从而显著改善存储器窗口(MW)和耐用特性。在这项工作中,我们为基于 MFMIS 栅极堆栈的 MBC-FeFET 开发了存储器特性的紧凑型分析模型。同时,利用该模型提出了栅极堆栈设计指南。优化后,MW 增大了三倍,IL 层的电场(${E}_{text {IL}}$ )减小了 0.17 倍。与采用初始栅极堆栈参数的平面 FeFET 相比,MW 增大了 21 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信