Clustering for mitigating subject variability in driving fatigue classification using electroencephalography source-space functional connectivity features.
{"title":"Clustering for mitigating subject variability in driving fatigue classification using electroencephalography source-space functional connectivity features.","authors":"Khanh Ha Nguyen, Yvonne Tran, Ashley Craig, Hung Nguyen, Rifai Chai","doi":"10.1088/1741-2552/ad8b6d","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>While Electroencephalography (EEG)-based driver fatigue state classification models have demonstrated effectiveness, their real-world application remains uncertain. The substantial variability in EEG signals among individuals poses a challenge in developing a universal model, often necessitating retraining with the introduction of new subjects. However, obtaining sufficient data for retraining, especially fatigue data for new subjects, is impractical in real-world settings.<i>Approach.</i>In response to these challenges, this paper introduces a hybrid solution for fatigue detection that combines clustering with classification. Unsupervised clustering groups subjects based on their EEG functional connectivity (FC) in an alert state, and classification models are subsequently applied to each cluster for predicting alert and fatigue states.<i>Main results</i>. Results indicate that classification on clusters achieves higher accuracy than scenarios without clustering, suggesting successful grouping of subjects with similar FC characteristics through clustering, thereby enhancing the classification process.<i>Significance.</i>Furthermore, the proposed hybrid method ensures a practical and realistic retraining process, improving the adaptability and effectiveness of the fatigue detection system in real-world applications.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ad8b6d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective.While Electroencephalography (EEG)-based driver fatigue state classification models have demonstrated effectiveness, their real-world application remains uncertain. The substantial variability in EEG signals among individuals poses a challenge in developing a universal model, often necessitating retraining with the introduction of new subjects. However, obtaining sufficient data for retraining, especially fatigue data for new subjects, is impractical in real-world settings.Approach.In response to these challenges, this paper introduces a hybrid solution for fatigue detection that combines clustering with classification. Unsupervised clustering groups subjects based on their EEG functional connectivity (FC) in an alert state, and classification models are subsequently applied to each cluster for predicting alert and fatigue states.Main results. Results indicate that classification on clusters achieves higher accuracy than scenarios without clustering, suggesting successful grouping of subjects with similar FC characteristics through clustering, thereby enhancing the classification process.Significance.Furthermore, the proposed hybrid method ensures a practical and realistic retraining process, improving the adaptability and effectiveness of the fatigue detection system in real-world applications.