Esraa Hamdi Abdelaziz , Rasha Ismail , Mai S. Mabrouk , Eman Amin
{"title":"Multi-omics data integration and analysis pipeline for precision medicine: Systematic review","authors":"Esraa Hamdi Abdelaziz , Rasha Ismail , Mai S. Mabrouk , Eman Amin","doi":"10.1016/j.compbiolchem.2024.108254","DOIUrl":null,"url":null,"abstract":"<div><div>Precision medicine has gained considerable popularity since the \"one-size-fits-all\" approach did not seem very effective or reflective of the complexity of the human body. Subsequently, since single-omics does not reflect the complexity of the human body’s inner workings, it did not result in the expected advancement in the medical field. Therefore, the multi-omics approach has emerged. The multi-omics approach involves integrating data from different omics technologies, such as DNA sequencing, RNA sequencing, mass spectrometry, and others, using computational methods and then analyzing the integrated result for different downstream analysis applications such as survival analysis, cancer classification, or biomarker identification. Most of the recent reviews were constrained to discussing one aspect of the multi-omics analysis pipeline, such as the dimensionality reduction step, the integration methods, or the interpretability aspect; however, very few provide a comprehensive review of every step of the analysis. This study aims to give an overview of the multi-omics analysis pipeline, starting with the most popular multi-omics databases used in recent literature, dimensionality reduction techniques, details the different types of data integration techniques and their downstream analysis applications, describes the most commonly used evaluation metrics, highlights the importance of model interpretability, and lastly discusses the challenges and potential future work for multi-omics data integration in precision medicine.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108254"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002421","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Precision medicine has gained considerable popularity since the "one-size-fits-all" approach did not seem very effective or reflective of the complexity of the human body. Subsequently, since single-omics does not reflect the complexity of the human body’s inner workings, it did not result in the expected advancement in the medical field. Therefore, the multi-omics approach has emerged. The multi-omics approach involves integrating data from different omics technologies, such as DNA sequencing, RNA sequencing, mass spectrometry, and others, using computational methods and then analyzing the integrated result for different downstream analysis applications such as survival analysis, cancer classification, or biomarker identification. Most of the recent reviews were constrained to discussing one aspect of the multi-omics analysis pipeline, such as the dimensionality reduction step, the integration methods, or the interpretability aspect; however, very few provide a comprehensive review of every step of the analysis. This study aims to give an overview of the multi-omics analysis pipeline, starting with the most popular multi-omics databases used in recent literature, dimensionality reduction techniques, details the different types of data integration techniques and their downstream analysis applications, describes the most commonly used evaluation metrics, highlights the importance of model interpretability, and lastly discusses the challenges and potential future work for multi-omics data integration in precision medicine.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.