{"title":"Downregulation of Krüppel-like factor 15 expression delays endochondral bone ossification during fracture healing","authors":"Shotaro Tachibana , Shinya Hayashi , Kemmei Ikuta , Kensuke Anjiki , Yuma Onoi , Yoshihito Suda , Kensuke Wada , Takuma Maeda , Akira Saito , Masanori Tsubosaka , Tomoyuki Kamenaga , Yuichi Kuroda , Naoki Nakano , Tomoyuki Matsumoto , Tetsuya Hosooka , Wataru Ogawa , Ryosuke Kuroda","doi":"10.1016/j.bone.2024.117302","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture.</div></div><div><h3>Methods</h3><div>We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 <sup>fl/fl</sup> Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3.</div></div><div><h3>Results</h3><div>The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice.</div></div><div><h3>Conclusion</h3><div>KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.</div></div>","PeriodicalId":9301,"journal":{"name":"Bone","volume":"190 ","pages":"Article 117302"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S8756328224002916","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture.
Methods
We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 fl/fl Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3.
Results
The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice.
Conclusion
KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.
期刊介绍:
BONE is an interdisciplinary forum for the rapid publication of original articles and reviews on basic, translational, and clinical aspects of bone and mineral metabolism. The Journal also encourages submissions related to interactions of bone with other organ systems, including cartilage, endocrine, muscle, fat, neural, vascular, gastrointestinal, hematopoietic, and immune systems. Particular attention is placed on the application of experimental studies to clinical practice.