Marina Shuklina, Liudmila Stepanova, Olga Ozhereleva, Anna Kovaleva, Inna Vidyaeva, Alexandr Korotkov, Liudmila Tsybalova
{"title":"Inserting CTL Epitopes of the Viral Nucleoprotein to Improve Immunogenicity and Protective Efficacy of Recombinant Protein against Influenza A Virus.","authors":"Marina Shuklina, Liudmila Stepanova, Olga Ozhereleva, Anna Kovaleva, Inna Vidyaeva, Alexandr Korotkov, Liudmila Tsybalova","doi":"10.3390/biology13100801","DOIUrl":null,"url":null,"abstract":"<p><p>Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505154/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100801","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Conserved influenza virus proteins, such as the hemagglutinin stem domain (HA2), nucleoprotein (NP), and matrix protein (M), are the main targets in the development of universal influenza vaccines. Previously, we constructed a recombinant vaccine protein Flg-HA2-2-4M2ehs containing the extracellular domain of the M2 protein (M2e) and the aa76-130 sequence of the second HA subunit as target antigens. It demonstrated immunogenicity and broad protection against influenza A viruses after intranasal and parenteral administration. This study shows that CD8+ epitopes of NP, inserted into a flagellin-fused protein carrying M2e and HA2, affect the post-vaccination immune humoral response to virus antigens without reducing protection. No differences were found between the two proteins in their ability to stimulate the formation of follicular Th in the spleen, which may contribute to a long-lasting antigen-specific humoral response. The data obtained on Balb/c mice suggest that the insertion of CTL NP epitopes into the flagellin-fused protein carrying M2e and HA2 reduces the antibody response to M2e and A/H3N2. In C57Bl6 mice, this stimulates the formation of NP-specific CD8+ Tem and virus-specific mono- and multifunctional CD4+ and CD8+ Tem in the spleen and completely protects mice from influenza virus subtypes A/H1N1pdm09 and A/H3N2.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.