Exercise Promotes Hippocampal Neurogenesis in T2DM Mice via Irisin/TLR4/MyD88/NF-κB-Mediated Neuroinflammation Pathway.

IF 3.6 3区 生物学 Q1 BIOLOGY
Haocheng Xu, Xin Tian, Yuanxin Wang, Junjie Lin, Baishu Zhu, Chen Zhao, Bin Wang, Xin Zhang, Yu Sun, Nan Li, Xun Sun, Fanxi Zeng, Mingzhi Li, Xiquan Ya, Renqing Zhao
{"title":"Exercise Promotes Hippocampal Neurogenesis in T2DM Mice via Irisin/TLR4/MyD88/NF-κB-Mediated Neuroinflammation Pathway.","authors":"Haocheng Xu, Xin Tian, Yuanxin Wang, Junjie Lin, Baishu Zhu, Chen Zhao, Bin Wang, Xin Zhang, Yu Sun, Nan Li, Xun Sun, Fanxi Zeng, Mingzhi Li, Xiquan Ya, Renqing Zhao","doi":"10.3390/biology13100809","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroinflammation is a major feature of type 2 diabetic mellitus (T2DM), adversely affecting hippocampal neurogenesis. However, the precise mechanism is not fully understood, and therapeutic approaches are currently lacking. Therefore, we determined the effects of exercise on neuroinflammation and hippocampal neurogenesis in T2DM mice, with a specific focus on understanding the role of the irisin and related cascade pathways in modulating the beneficial effects of exercise in these processes. Ten-week exercise significantly decreased T2DM-induced inflammation levels and markedly promoted hippocampal neurogenesis and memory function. However, these positive effects were reversed by 10 weeks of treatment with cyclo RGDyk, an inhibitor of irisin receptor signaling. Additionally, exercise helped reduce the M1 phenotype polarization of hippocampal microglia in diabetic mice; this effect could be reversed with cyclo RGDyk treatment. Moreover, exercise markedly increased the levels of fibronectin type III domain-containing protein 5 (FNDC5)/irisin protein while decreasing the expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa-B (NF-κB) in the hippocampus of T2DM mice. However, blocking irisin receptor signaling counteracted the down-regulation of TLR4/MyD88/NF-κB in diabetic mice undergoing exercise intervention. Conclusively, exercise appears to be effective in reducing neuroinflammation and enhancing hippocampal neurogenesis and memory in diabetes mice. The positive effects are involved in the participation of the irisin/TLR4/MyD88/NF-κB signaling pathway, highlighting the potential of exercise in the management of diabetic-induced cognitive decline.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504848/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100809","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroinflammation is a major feature of type 2 diabetic mellitus (T2DM), adversely affecting hippocampal neurogenesis. However, the precise mechanism is not fully understood, and therapeutic approaches are currently lacking. Therefore, we determined the effects of exercise on neuroinflammation and hippocampal neurogenesis in T2DM mice, with a specific focus on understanding the role of the irisin and related cascade pathways in modulating the beneficial effects of exercise in these processes. Ten-week exercise significantly decreased T2DM-induced inflammation levels and markedly promoted hippocampal neurogenesis and memory function. However, these positive effects were reversed by 10 weeks of treatment with cyclo RGDyk, an inhibitor of irisin receptor signaling. Additionally, exercise helped reduce the M1 phenotype polarization of hippocampal microglia in diabetic mice; this effect could be reversed with cyclo RGDyk treatment. Moreover, exercise markedly increased the levels of fibronectin type III domain-containing protein 5 (FNDC5)/irisin protein while decreasing the expression of Toll-like receptor 4 (TLR4), myeloid differential protein-88 (MyD88), and nuclear factor kappa-B (NF-κB) in the hippocampus of T2DM mice. However, blocking irisin receptor signaling counteracted the down-regulation of TLR4/MyD88/NF-κB in diabetic mice undergoing exercise intervention. Conclusively, exercise appears to be effective in reducing neuroinflammation and enhancing hippocampal neurogenesis and memory in diabetes mice. The positive effects are involved in the participation of the irisin/TLR4/MyD88/NF-κB signaling pathway, highlighting the potential of exercise in the management of diabetic-induced cognitive decline.

运动通过Irisin/TLR4/MyD88/NF-κB介导的神经炎症通路促进T2DM小鼠的海马神经发生
神经炎症是 2 型糖尿病(T2DM)的一个主要特征,会对海马神经发生产生不利影响。然而,其确切机制尚不完全清楚,目前也缺乏治疗方法。因此,我们测定了运动对 T2DM 小鼠神经炎症和海马神经发生的影响,重点是了解鸢尾素和相关级联通路在调节运动对这些过程的有益影响中的作用。为期十周的运动大大降低了T2DM诱导的炎症水平,并明显促进了海马神经发生和记忆功能。然而,使用鸢尾素受体信号转导抑制剂 Cyclo RGDyk 治疗 10 周后,这些积极效应被逆转。此外,运动有助于减少糖尿病小鼠海马小胶质细胞的 M1 表型极化;这种效应可通过 Cyclo RGDyk 治疗逆转。此外,运动明显增加了T2DM小鼠海马中纤维粘连蛋白Ⅲ型结构域含蛋白5(FNDC5)/鸢尾素蛋白的水平,同时降低了Toll样受体4(TLR4)、髓样差异蛋白-88(MyD88)和核因子卡巴-B(NF-κB)的表达。然而,在接受运动干预的糖尿病小鼠中,阻断鸢尾素受体信号转导可抵消TLR4/MyD88/NF-κB的下调。总之,运动似乎能有效减少神经炎症,增强糖尿病小鼠的海马神经发生和记忆。这些积极作用与鸢尾素/TLR4/MyD88/NF-κB信号通路的参与有关,凸显了运动在控制糖尿病引起的认知能力下降方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信