Archetypal Analysis of Kidney Allograft Biopsies Using Next-generation Sequencing Technology.

IF 5.3 2区 医学 Q1 IMMUNOLOGY
Esteban Cortes Garcia, Alessia Giarraputo, Maud Racapé, Valentin Goutaudier, Cindy Ursule-Dufait, Pierre de la Grange, Franck Letourneur, Marc Raynaud, Clément Couderau, Fariza Mezine, Jessie Dagobert, Oriol Bestard, Francesc Moreso, Jean Villard, Fabian Halleck, Magali Giral, Sophie Brouard, Richard Danger, Pierre-Antoine Gourraud, Marion Rabant, Lionel Couzi, Moglie Le Quintrec, Nassim Kamar, Emmanuel Morelon, François Vrtovsnik, Jean-Luc Taupin, Renaud Snanoudj, Christophe Legendre, Dany Anglicheau, Klemens Budde, Carmen Lefaucheur, Alexandre Loupy, Olivier Aubert
{"title":"Archetypal Analysis of Kidney Allograft Biopsies Using Next-generation Sequencing Technology.","authors":"Esteban Cortes Garcia, Alessia Giarraputo, Maud Racapé, Valentin Goutaudier, Cindy Ursule-Dufait, Pierre de la Grange, Franck Letourneur, Marc Raynaud, Clément Couderau, Fariza Mezine, Jessie Dagobert, Oriol Bestard, Francesc Moreso, Jean Villard, Fabian Halleck, Magali Giral, Sophie Brouard, Richard Danger, Pierre-Antoine Gourraud, Marion Rabant, Lionel Couzi, Moglie Le Quintrec, Nassim Kamar, Emmanuel Morelon, François Vrtovsnik, Jean-Luc Taupin, Renaud Snanoudj, Christophe Legendre, Dany Anglicheau, Klemens Budde, Carmen Lefaucheur, Alexandre Loupy, Olivier Aubert","doi":"10.1097/TP.0000000000005181","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In kidney transplantation, molecular diagnostics may be a valuable approach to improve the precision of the diagnosis. Using next-generation sequencing (NGS), we aimed to identify clinically relevant archetypes.</p><p><strong>Methods: </strong>We conducted an Illumina bulk RNA sequencing on 770 kidney biopsies (540 kidney recipients) collected between 2006 and 2021 from 11 European centers. Differentially expressed genes were determined for 11 Banff lesions. An ElasticNet model was used for feature selection, and 4 machine learning classifiers were trained to predict the probability of presence of the lesions. NGS-based classifiers were used in an unsupervised archetypal analysis to different archetypes. The association of the archetypes with allograft survival was assessed using the iBox risk prediction score.</p><p><strong>Results: </strong>The ElasticNet feature selection reduced the number of the genes from a range of 859-10 830 to a range of 52-867 genes. NGS-based classifiers demonstrated robust performances (precision-recall area under the curves 0.708-0.980) in predicting the Banff lesions. Archetypal analysis revealed 8 distinct phenotypes, each characterized by distinct clinical, immunological, and histological features. Although the archetypes confirmed the well-defined Banff rejection phenotypes for T cell-mediated rejection and antibody-mediated rejection, equivocal histologic antibody-mediated rejection, and borderline diagnoses were reclassified into different archetypes based on their molecular signatures. The 8 NGS-based archetypes displayed distinct allograft survival profiles with incremental graft loss rates between archetypes, ranging from 90% to 56% rates 7 y after evaluation (P < 0.0001).</p><p><strong>Conclusions: </strong>Using molecular phenotyping, 8 archetypes were identified. These NGS-based archetypes might improve disease characterization, reclassify ambiguous Banff diagnoses, and enable patient-specific risk stratification.</p>","PeriodicalId":23316,"journal":{"name":"Transplantation","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplantation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/TP.0000000000005181","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In kidney transplantation, molecular diagnostics may be a valuable approach to improve the precision of the diagnosis. Using next-generation sequencing (NGS), we aimed to identify clinically relevant archetypes.

Methods: We conducted an Illumina bulk RNA sequencing on 770 kidney biopsies (540 kidney recipients) collected between 2006 and 2021 from 11 European centers. Differentially expressed genes were determined for 11 Banff lesions. An ElasticNet model was used for feature selection, and 4 machine learning classifiers were trained to predict the probability of presence of the lesions. NGS-based classifiers were used in an unsupervised archetypal analysis to different archetypes. The association of the archetypes with allograft survival was assessed using the iBox risk prediction score.

Results: The ElasticNet feature selection reduced the number of the genes from a range of 859-10 830 to a range of 52-867 genes. NGS-based classifiers demonstrated robust performances (precision-recall area under the curves 0.708-0.980) in predicting the Banff lesions. Archetypal analysis revealed 8 distinct phenotypes, each characterized by distinct clinical, immunological, and histological features. Although the archetypes confirmed the well-defined Banff rejection phenotypes for T cell-mediated rejection and antibody-mediated rejection, equivocal histologic antibody-mediated rejection, and borderline diagnoses were reclassified into different archetypes based on their molecular signatures. The 8 NGS-based archetypes displayed distinct allograft survival profiles with incremental graft loss rates between archetypes, ranging from 90% to 56% rates 7 y after evaluation (P < 0.0001).

Conclusions: Using molecular phenotyping, 8 archetypes were identified. These NGS-based archetypes might improve disease characterization, reclassify ambiguous Banff diagnoses, and enable patient-specific risk stratification.

利用新一代测序技术对肾移植活组织样本进行原型分析
背景:在肾移植中,分子诊断可能是提高诊断精确度的一种有价值的方法。利用新一代测序技术(NGS),我们旨在确定与临床相关的原型:我们对 2006 年至 2021 年期间从 11 个欧洲中心收集的 770 例肾脏活检样本(540 例肾脏受体)进行了 Illumina 大量 RNA 测序。确定了 11 种 Banff 病变的差异表达基因。使用 ElasticNet 模型进行特征选择,并训练了 4 个机器学习分类器来预测病变存在的概率。基于 NGS 的分类器被用于无监督原型分析,以确定不同的原型。使用 iBox 风险预测评分评估了原型与异体移植存活率之间的关联:ElasticNet特征选择将基因数量从859-10 830个减少到52-867个。基于 NGS 的分类器在预测 Banff 病变方面表现稳健(精确度-召回曲线下面积为 0.708-0.980)。原型分析揭示了 8 种不同的表型,每种表型都具有不同的临床、免疫学和组织学特征。虽然原型证实了 T 细胞介导的排斥反应和抗体介导的排斥反应的明确班夫排斥反应表型,但组织学上抗体介导的排斥反应和边缘诊断则根据其分子特征被重新归类为不同的原型。这 8 个基于 NGS 的原型显示了不同的异体移植物存活情况,不同原型之间的移植物丢失率不同,评估后 7 年的丢失率从 90% 到 56% 不等(P < 0.0001):通过分子表型分析,确定了 8 种原型。这些基于 NGS 的原型可能会改善疾病的特征描述,对模糊的 Banff 诊断进行重新分类,并对患者进行特异性风险分层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transplantation
Transplantation 医学-免疫学
CiteScore
8.50
自引率
11.30%
发文量
1906
审稿时长
1 months
期刊介绍: The official journal of The Transplantation Society, and the International Liver Transplantation Society, Transplantation is published monthly and is the most cited and influential journal in the field, with more than 25,000 citations per year. Transplantation has been the trusted source for extensive and timely coverage of the most important advances in transplantation for over 50 years. The Editors and Editorial Board are an international group of research and clinical leaders that includes many pioneers of the field, representing a diverse range of areas of expertise. This capable editorial team provides thoughtful and thorough peer review, and delivers rapid, careful and insightful editorial evaluation of all manuscripts submitted to the journal. Transplantation is committed to rapid review and publication. The journal remains competitive with a time to first decision of fewer than 21 days. Transplantation was the first in the field to offer CME credit to its peer reviewers for reviews completed. The journal publishes original research articles in original clinical science and original basic science. Short reports bring attention to research at the forefront of the field. Other areas covered include cell therapy and islet transplantation, immunobiology and genomics, and xenotransplantation. ​
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信