{"title":"First insights into the prevalence, genetic characteristics, and pathogenicity of <i>Bacillus cereus</i> from generations worldwide.","authors":"Cuihong Tong, Danyu Xiao, Qi Li, Jing Gou, Shuang Wang, Zhenling Zeng, Wenguang Xiong","doi":"10.1128/msphere.00702-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bacillus cereus</i>, a global threat, is one of the major causes of toxin-induced foodborne diseases. However, a comprehensive assessment of the prevalence and characteristics of <i>B. cereus</i> worldwide is still lacking. Here, we applied whole-genome sequence analysis to 191 <i>B. cereus</i> collected in Africa, America, Asia, Europe, and Oceania from the 1900s to 2022, finding that CC142 dominated the global <i>B. cereus</i> clonal complex. The results provided direct evidence that <i>B. cereus</i> could spread through the food chain and intercontinentally. <i>B. cereus</i> from different generations worldwide showed coherence in the antibiotic-resistant gene and virulence and biofilm gene profiles, although with high genomic heterogeneity. The <i>BCI-BCII-vanZF-fosB</i> profiles and virulence and biofilm genes were detected at high rates, and we emphasized that <i>B. cereus</i> would pose a serious challenge to global public health and clinical treatment.IMPORTANCEThis study first emphasized the prevalence, genetic characteristics, and pathogenicity of <i>Bacillus cereus</i> worldwide from the 1900s to 2022 using whole-genome sequence analysis. The CC142 dominated the global <i>Bacillus cereus</i> clonal complex. Moreover, we revealed a close evolutionary relationship between the isolates from different sources. <i>B. cereus</i> isolates from different generations worldwide showed coherence in potential pathogenicity, although with high genomic heterogeneity. The <i>BCI-BCII-vanZF-fosB</i> profiles and virulence and biofilm genes were detected at high rates, and we emphasized that <i>B. cereus</i> would pose a serious challenge to global public health and clinical treatment.</p>","PeriodicalId":19052,"journal":{"name":"mSphere","volume":" ","pages":"e0070224"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580406/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSphere","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msphere.00702-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacillus cereus, a global threat, is one of the major causes of toxin-induced foodborne diseases. However, a comprehensive assessment of the prevalence and characteristics of B. cereus worldwide is still lacking. Here, we applied whole-genome sequence analysis to 191 B. cereus collected in Africa, America, Asia, Europe, and Oceania from the 1900s to 2022, finding that CC142 dominated the global B. cereus clonal complex. The results provided direct evidence that B. cereus could spread through the food chain and intercontinentally. B. cereus from different generations worldwide showed coherence in the antibiotic-resistant gene and virulence and biofilm gene profiles, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.IMPORTANCEThis study first emphasized the prevalence, genetic characteristics, and pathogenicity of Bacillus cereus worldwide from the 1900s to 2022 using whole-genome sequence analysis. The CC142 dominated the global Bacillus cereus clonal complex. Moreover, we revealed a close evolutionary relationship between the isolates from different sources. B. cereus isolates from different generations worldwide showed coherence in potential pathogenicity, although with high genomic heterogeneity. The BCI-BCII-vanZF-fosB profiles and virulence and biofilm genes were detected at high rates, and we emphasized that B. cereus would pose a serious challenge to global public health and clinical treatment.
期刊介绍:
mSphere™ is a multi-disciplinary open-access journal that will focus on rapid publication of fundamental contributions to our understanding of microbiology. Its scope will reflect the immense range of fields within the microbial sciences, creating new opportunities for researchers to share findings that are transforming our understanding of human health and disease, ecosystems, neuroscience, agriculture, energy production, climate change, evolution, biogeochemical cycling, and food and drug production. Submissions will be encouraged of all high-quality work that makes fundamental contributions to our understanding of microbiology. mSphere™ will provide streamlined decisions, while carrying on ASM''s tradition for rigorous peer review.