Qihui Yu, Henk-Willem Veltkamp, Remco J Wiegerink, Joost C Lötters
{"title":"Fabrication of Buried Microchannels with Almost Circular Cross-Section Using HNA Wet Etching.","authors":"Qihui Yu, Henk-Willem Veltkamp, Remco J Wiegerink, Joost C Lötters","doi":"10.3390/mi15101230","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a novel fabrication process for the realization of large, suspended microfluidic channels is presented. The method is based on Buried Channel Technology and uses a mixture of HF, HNO<sub>3</sub>, and water etchant, which has high selectivity between the silicon substrate and the silicon-rich silicon nitride mask material. Metal electrodes for actuation and read-out are integrated into the fabrication process. The microfluidic channels are released from the silicon substrate to allow the vibrational movement needed for the application. The resulting microfluidic channels have a near-circular cross-section, with a diameter up to 300 μm and a channel wall thickness of 1.5 μm. The structure of a micro-Coriolis mass-flow and density sensor is fabricated with this process as an example of a possible application.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509330/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101230","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a novel fabrication process for the realization of large, suspended microfluidic channels is presented. The method is based on Buried Channel Technology and uses a mixture of HF, HNO3, and water etchant, which has high selectivity between the silicon substrate and the silicon-rich silicon nitride mask material. Metal electrodes for actuation and read-out are integrated into the fabrication process. The microfluidic channels are released from the silicon substrate to allow the vibrational movement needed for the application. The resulting microfluidic channels have a near-circular cross-section, with a diameter up to 300 μm and a channel wall thickness of 1.5 μm. The structure of a micro-Coriolis mass-flow and density sensor is fabricated with this process as an example of a possible application.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.