Equivalent Circuit of a Stacked Piezoelectric Cymbal Vibrator.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL
Micromachines Pub Date : 2024-09-28 DOI:10.3390/mi15101205
Zhaohan Gong, Yajun Zheng, Shuhan Yao, Xinhu Liu, Ningdong Hu, Hongping Hu
{"title":"Equivalent Circuit of a Stacked Piezoelectric Cymbal Vibrator.","authors":"Zhaohan Gong, Yajun Zheng, Shuhan Yao, Xinhu Liu, Ningdong Hu, Hongping Hu","doi":"10.3390/mi15101205","DOIUrl":null,"url":null,"abstract":"<p><p>In order to provide a convenient and fast calculation method, the equivalent circuit of a novel stacked piezoelectric cymbal vibrator is studied. The equivalent circuit model of the piezoelectric stack is derived by combining the equivalent circuit models of the thin piezoelectric disk and electrode. The equivalent circuit of the cymbal structure is then derived. The equivalent circuit model of the stacked piezoelectric cymbal vibrator is further proposed. The output axial displacements and output forces of the cymbal vibrator under different excitation voltages are investigated using the equivalent circuit model. The effectiveness of the equivalent circuit has been verified by comparing it with the finite element method. Furthermore, the equivalent circuit method has a much faster calculation speed than the finite element method.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101205","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In order to provide a convenient and fast calculation method, the equivalent circuit of a novel stacked piezoelectric cymbal vibrator is studied. The equivalent circuit model of the piezoelectric stack is derived by combining the equivalent circuit models of the thin piezoelectric disk and electrode. The equivalent circuit of the cymbal structure is then derived. The equivalent circuit model of the stacked piezoelectric cymbal vibrator is further proposed. The output axial displacements and output forces of the cymbal vibrator under different excitation voltages are investigated using the equivalent circuit model. The effectiveness of the equivalent circuit has been verified by comparing it with the finite element method. Furthermore, the equivalent circuit method has a much faster calculation speed than the finite element method.

叠层压电铙钹振动器的等效电路。
为了提供一种方便快捷的计算方法,我们研究了新型叠层压电钹振动器的等效电路。通过结合薄压电盘和电极的等效电路模型,得出了压电叠层的等效电路模型。然后推导出铙钹结构的等效电路。进一步提出了叠层压电钹振动器的等效电路模型。利用等效电路模型研究了钹振动器在不同激励电压下的输出轴向位移和输出力。通过与有限元法的比较,验证了等效电路的有效性。此外,等效电路法的计算速度比有限元法快得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信