Wen-Shing Sun, Ying-Shun Hsu, Chuen-Lin Tien, Wen-Kai Lin, Yi-Lun Su, Jun-Yi Yu, Shao-Kui Zhou, Yuan-Yan Liang, Wan-Pin Tsai, Chi Sun, Tsung-Xian Lee, Wei-Chia Su, Shiuan-Huei Lin, Ching-Cherng Sun
{"title":"Design and Manufacture of 30-Degree Projection Lens for Augmented Reality Waveguide.","authors":"Wen-Shing Sun, Ying-Shun Hsu, Chuen-Lin Tien, Wen-Kai Lin, Yi-Lun Su, Jun-Yi Yu, Shao-Kui Zhou, Yuan-Yan Liang, Wan-Pin Tsai, Chi Sun, Tsung-Xian Lee, Wei-Chia Su, Shiuan-Huei Lin, Ching-Cherng Sun","doi":"10.3390/mi15101198","DOIUrl":null,"url":null,"abstract":"<p><p>A projection lens with a 30-degree field of view is developed for use in augmented reality (AR) glasses, including a waveguide combiner designed for a 0.35-inch LCoS panel. The entrance pupil diameter of the lens is 14 mm and the lens has an effective focal length of 16.443 mm; an F-number of 1.175. This paper has four key issues: optical projection lens design, lens manufacturing and assembly tolerance analysis, projection lens resolution testing, and AR glasses system resolution testing of panel images projected by the projection lens. After lens manufacture, the lens was tested, achieving a central field image quality of 57 cycles/mm, an angular resolution of 33 pixels per degree (PPD), a 0.7 field image quality of 40.3 cycles/mm, and an angular resolution of 23 pixels per degree (PPD). Imaging performance testing based on a diffraction-type waveguide shows a resolution of 57 cycles/mm in the center area and an angular resolution of 33 PPD.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101198","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A projection lens with a 30-degree field of view is developed for use in augmented reality (AR) glasses, including a waveguide combiner designed for a 0.35-inch LCoS panel. The entrance pupil diameter of the lens is 14 mm and the lens has an effective focal length of 16.443 mm; an F-number of 1.175. This paper has four key issues: optical projection lens design, lens manufacturing and assembly tolerance analysis, projection lens resolution testing, and AR glasses system resolution testing of panel images projected by the projection lens. After lens manufacture, the lens was tested, achieving a central field image quality of 57 cycles/mm, an angular resolution of 33 pixels per degree (PPD), a 0.7 field image quality of 40.3 cycles/mm, and an angular resolution of 23 pixels per degree (PPD). Imaging performance testing based on a diffraction-type waveguide shows a resolution of 57 cycles/mm in the center area and an angular resolution of 33 PPD.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.