Alonso Quiroz, Gabriela Belledonne, Fujiko Saavedra, Javier González, Dolores Busso
{"title":"Vitamin E supplementation prevents obesogenic diet-induced developmental abnormalities in SR-B1 deficient embryos.","authors":"Alonso Quiroz, Gabriela Belledonne, Fujiko Saavedra, Javier González, Dolores Busso","doi":"10.3389/fcell.2024.1460697","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Genetic and environmental factors influence the risk of neural tube defects (NTD), congenital malformations characterized by abnormal brain and spine formation. Mouse embryos deficient in Scavenger Receptor Class B Type 1 (SR-B1), which is involved in the bidirectional transfer of lipids between lipoproteins and cells, exhibit a high prevalence of exencephaly, preventable by maternal vitamin E supplementation. SR-B1 knock-out (KO) embryos are severely deficient in vitamin E and show elevated reactive oxygen species levels during neurulation.</p><p><strong>Methods: </strong>We fed SR-B1 heterozygous female mice a high-fat/high-sugar (HFHS) diet and evaluated the vitamin E and oxidative status in dams and embryos from heterozygous intercrosses. We also determined the incidence of NTD.</p><p><strong>Results and discussion: </strong>HFHS-fed SR-B1 HET females exhibited altered glucose metabolism and excess circulating lipids, along with a higher incidence of embryos with developmental delay and NTD. Vitamin E supplementation partially mitigated HFHS-induced maternal metabolic abnormalities and completely prevented embryonic malformations, likely through indirect mechanisms involving the reduction of oxidative stress and improved lipid handling by the parietal yolk sac.</p>","PeriodicalId":12448,"journal":{"name":"Frontiers in Cell and Developmental Biology","volume":"12 ","pages":"1460697"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496146/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cell and Developmental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fcell.2024.1460697","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Genetic and environmental factors influence the risk of neural tube defects (NTD), congenital malformations characterized by abnormal brain and spine formation. Mouse embryos deficient in Scavenger Receptor Class B Type 1 (SR-B1), which is involved in the bidirectional transfer of lipids between lipoproteins and cells, exhibit a high prevalence of exencephaly, preventable by maternal vitamin E supplementation. SR-B1 knock-out (KO) embryos are severely deficient in vitamin E and show elevated reactive oxygen species levels during neurulation.
Methods: We fed SR-B1 heterozygous female mice a high-fat/high-sugar (HFHS) diet and evaluated the vitamin E and oxidative status in dams and embryos from heterozygous intercrosses. We also determined the incidence of NTD.
Results and discussion: HFHS-fed SR-B1 HET females exhibited altered glucose metabolism and excess circulating lipids, along with a higher incidence of embryos with developmental delay and NTD. Vitamin E supplementation partially mitigated HFHS-induced maternal metabolic abnormalities and completely prevented embryonic malformations, likely through indirect mechanisms involving the reduction of oxidative stress and improved lipid handling by the parietal yolk sac.
导言:神经管畸形(NTD)是一种以大脑和脊柱形成异常为特征的先天性畸形,遗传和环境因素都会影响其发病风险。清道夫 B 类受体 1 型(SR-B1)参与脂蛋白和细胞之间脂质的双向转移,缺乏 SR-B1 的小鼠胚胎显示出外显子畸形的高发病率,而母体补充维生素 E 则可预防外显子畸形。SR-B1基因敲除(KO)胚胎严重缺乏维生素E,并在神经发育过程中表现出活性氧水平升高:方法:我们用高脂/高糖(HFHS)饮食喂养 SR-B1 杂合子雌性小鼠,并评估杂合子杂交母鼠和胚胎的维生素 E 和氧化状态。我们还测定了NTD的发病率:HFHS喂养的SR-B1 HET雌鼠表现出糖代谢改变和循环脂质过剩,胚胎发育迟缓和NTD发生率较高。补充维生素 E 可部分缓解 HFHS 引起的母体代谢异常,并完全防止胚胎畸形,这可能是通过减少氧化应激和改善顶叶卵黄囊脂质处理的间接机制实现的。
期刊介绍:
Frontiers in Cell and Developmental Biology is a broad-scope, interdisciplinary open-access journal, focusing on the fundamental processes of life, led by Prof Amanda Fisher and supported by a geographically diverse, high-quality editorial board.
The journal welcomes submissions on a wide spectrum of cell and developmental biology, covering intracellular and extracellular dynamics, with sections focusing on signaling, adhesion, migration, cell death and survival and membrane trafficking. Additionally, the journal offers sections dedicated to the cutting edge of fundamental and translational research in molecular medicine and stem cell biology.
With a collaborative, rigorous and transparent peer-review, the journal produces the highest scientific quality in both fundamental and applied research, and advanced article level metrics measure the real-time impact and influence of each publication.