{"title":"Depth-Aware Networks for Multi-Organ Lesion Detection in Chest CT Scans.","authors":"Han Zhang, Albert C S Chung","doi":"10.3390/bioengineering11100998","DOIUrl":null,"url":null,"abstract":"<p><p>Computer tomography (CT) scans' capabilities in detecting lesions have been increasing remarkably in the past decades. In this paper, we propose a multi-organ lesion detection (MOLD) approach to better address real-life chest-related clinical needs. MOLD is a challenging task, especially within a large, high resolution image volume, due to various types of background information interference and large differences in lesion sizes. Furthermore, the appearance similarity between lesions and other normal tissues demands more discriminative features. In order to overcome these challenges, we introduce depth-aware (DA) and skipped-layer hierarchical training (SHT) mechanisms with the novel Dense 3D context enhanced (Dense 3DCE) lesion detection model. The novel Dense 3DCE framework considers the shallow, medium, and deep-level features together comprehensively. In addition, equipped with our SHT scheme, the backpropagation process can now be supervised under precise control, while the DA scheme can effectively incorporate depth domain knowledge into the scheme. Extensive experiments have been carried out on a publicly available, widely used DeepLesion dataset, and the results prove the effectiveness of our DA-SHT Dense 3DCE network in the MOLD task.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"11 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11100998","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Computer tomography (CT) scans' capabilities in detecting lesions have been increasing remarkably in the past decades. In this paper, we propose a multi-organ lesion detection (MOLD) approach to better address real-life chest-related clinical needs. MOLD is a challenging task, especially within a large, high resolution image volume, due to various types of background information interference and large differences in lesion sizes. Furthermore, the appearance similarity between lesions and other normal tissues demands more discriminative features. In order to overcome these challenges, we introduce depth-aware (DA) and skipped-layer hierarchical training (SHT) mechanisms with the novel Dense 3D context enhanced (Dense 3DCE) lesion detection model. The novel Dense 3DCE framework considers the shallow, medium, and deep-level features together comprehensively. In addition, equipped with our SHT scheme, the backpropagation process can now be supervised under precise control, while the DA scheme can effectively incorporate depth domain knowledge into the scheme. Extensive experiments have been carried out on a publicly available, widely used DeepLesion dataset, and the results prove the effectiveness of our DA-SHT Dense 3DCE network in the MOLD task.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering