Taxonomy and Survey of Collaborative Intrusion Detection System using Federated Learning

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS
Aulia Arif Wardana, Parman Sukarno
{"title":"Taxonomy and Survey of Collaborative Intrusion Detection System using Federated Learning","authors":"Aulia Arif Wardana, Parman Sukarno","doi":"10.1145/3701724","DOIUrl":null,"url":null,"abstract":"This review paper looks at recent research on Federated Learning (FL) for Collaborative Intrusion Detection Systems (CIDS) to establish a taxonomy and survey. The motivation behind this review comes from the difficulty of detecting coordinated cyberattacks in large-scale distributed networks. Collaborative anomalies are one of the network anomalies that need to be detected through robust collaborative learning methods. FL is promising collaborative learning method in recent research. This review aims to offer insights and lesson learn for creating a taxonomy of collaborative anomaly detection in CIDS using FL as a collaborative learning method. Our findings suggest that a taxonomy is required to map the discussion area, including an algorithm for training the learning model, the dataset, global aggregation model, system architecture, security, and privacy. Our results indicate that FL is a promising approach for collaborative anomaly detection in CIDS, and the proposed taxonomy could be useful for future research in this area. Overall, this review contributes to the growing knowledge of FL for CIDS, providing insights and lessons for researchers and practitioners. This research also concludes significant challenges, opportunities, and future directions in CIDS based on collaborative anomaly detection using FL.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"3 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3701724","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This review paper looks at recent research on Federated Learning (FL) for Collaborative Intrusion Detection Systems (CIDS) to establish a taxonomy and survey. The motivation behind this review comes from the difficulty of detecting coordinated cyberattacks in large-scale distributed networks. Collaborative anomalies are one of the network anomalies that need to be detected through robust collaborative learning methods. FL is promising collaborative learning method in recent research. This review aims to offer insights and lesson learn for creating a taxonomy of collaborative anomaly detection in CIDS using FL as a collaborative learning method. Our findings suggest that a taxonomy is required to map the discussion area, including an algorithm for training the learning model, the dataset, global aggregation model, system architecture, security, and privacy. Our results indicate that FL is a promising approach for collaborative anomaly detection in CIDS, and the proposed taxonomy could be useful for future research in this area. Overall, this review contributes to the growing knowledge of FL for CIDS, providing insights and lessons for researchers and practitioners. This research also concludes significant challenges, opportunities, and future directions in CIDS based on collaborative anomaly detection using FL.
使用联盟学习的协作式入侵检测系统的分类与调查
这篇综述论文探讨了最近关于协作式入侵检测系统(CIDS)的联合学习(FL)研究,以建立分类和调查。这篇综述的动机来自于在大规模分布式网络中检测协同网络攻击的难度。协作异常是需要通过强大的协作学习方法来检测的网络异常之一。在最近的研究中,FL 是一种很有前景的协作学习方法。本综述旨在为使用 FL 作为协作学习方法在 CIDS 中创建协作异常检测分类法提供见解和经验教训。我们的研究结果表明,需要一个分类法来映射讨论领域,包括训练学习模型的算法、数据集、全局聚合模型、系统架构、安全性和隐私性。我们的研究结果表明,FL 是在 CIDS 中进行协作异常检测的一种很有前途的方法,所提出的分类法对这一领域的未来研究很有帮助。总之,本综述有助于加深人们对用于 CIDS 的 FL 的了解,为研究人员和从业人员提供见解和经验。本研究还总结了基于使用 FL 的协同异常检测的 CIDS 所面临的重大挑战、机遇和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信