Deterministic Bethe state preparation

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-10-24 DOI:10.22331/q-2024-10-24-1510
David Raveh, Rafael I. Nepomechie
{"title":"Deterministic Bethe state preparation","authors":"David Raveh, Rafael I. Nepomechie","doi":"10.22331/q-2024-10-24-1510","DOIUrl":null,"url":null,"abstract":"We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer, including the exact eigenstates of the spin-$1/2 XXZ$ quantum spin chain with either open or closed boundary conditions. The algorithm is deterministic, does not require ancillary qubits, and does not require QR decompositions. The circuit prepares such an $L$-qubit state with $M$ down-spins using $\\binom{L}{M}-1$ multi-controlled rotation gates and $2M(L-M)$ CNOT-gates.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"25 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-10-24-1510","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present an explicit quantum circuit that prepares an arbitrary $U(1)$-eigenstate on a quantum computer, including the exact eigenstates of the spin-$1/2 XXZ$ quantum spin chain with either open or closed boundary conditions. The algorithm is deterministic, does not require ancillary qubits, and does not require QR decompositions. The circuit prepares such an $L$-qubit state with $M$ down-spins using $\binom{L}{M}-1$ multi-controlled rotation gates and $2M(L-M)$ CNOT-gates.
确定性贝特态准备
我们提出了一种明确的量子电路,可在量子计算机上准备任意 $U(1)$ 特征状态,包括具有开放或封闭边界条件的自旋-$1/2 XXZ$ 量子自旋链的精确特征状态。该算法是确定性的,不需要辅助量子位,也不需要 QR 分解。该电路使用 $\binom{L}{M}-1$ 多控旋转门和 $2M(L-M)$ CNOT 门来准备这样一个具有 $M$ 下旋的 $L$ 量子位态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信