Eneiva Carla Carvalho Celeghini, Fernanda Baatsch-Nascimento, Alexandre da Rocha Bozzi, Laura Nataly Garcia-Oliveros, Rubens Paes Arruda
{"title":"Bovine testicular heat stress: From climate change to effects on microRNA profile","authors":"Eneiva Carla Carvalho Celeghini, Fernanda Baatsch-Nascimento, Alexandre da Rocha Bozzi, Laura Nataly Garcia-Oliveros, Rubens Paes Arruda","doi":"10.1016/j.anireprosci.2024.107620","DOIUrl":null,"url":null,"abstract":"<div><div>Heat stress is caused by exposure of animals to high temperatures and humidity, outside their thermal comfort zone. This can have negative outcomes, including adversely affecting general well-being and reducing productive and reproductive performance. In males, heat stress can disrupt testicular thermoregulation, with deleterious effects on spermatogenesis and consequently, decreases in sperm quality and fertility potential. Thus, high environmental temperature is considered one of the most important factors that predisposes bulls to subfertility and has already been the subject of many studies, particularly in tropical or subtropical countries. It is essential to study effects of testicular heat stress in bulls, know the chronology of clinical and sperm findings, and understand the underlying pathophysiology. In addition, elucidating molecular mechanisms involved in heat stress and testicular function could provide the basis for effective, evidence-based strategies for selecting more thermotolerant animals. Excessive heat affects expression of messenger RNA (mRNA) and microRNA (miRNA) in sperm, which have important roles in regulating male fertility. Based on current trends in climate change, the incidence of chronically high temperatures that cause heat stress is expected to increase, posing increasing risks to health and survival of many species. The study of mRNAs and miRNAs can provide valuable insights to select animals that are more resilient to climate change. In addition to the search for more thermotolerant animals, other strategies to mitigate effects of heat stress include reproductive biotechniques and promotion of a better environment.</div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"270 ","pages":"Article 107620"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024002203","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Heat stress is caused by exposure of animals to high temperatures and humidity, outside their thermal comfort zone. This can have negative outcomes, including adversely affecting general well-being and reducing productive and reproductive performance. In males, heat stress can disrupt testicular thermoregulation, with deleterious effects on spermatogenesis and consequently, decreases in sperm quality and fertility potential. Thus, high environmental temperature is considered one of the most important factors that predisposes bulls to subfertility and has already been the subject of many studies, particularly in tropical or subtropical countries. It is essential to study effects of testicular heat stress in bulls, know the chronology of clinical and sperm findings, and understand the underlying pathophysiology. In addition, elucidating molecular mechanisms involved in heat stress and testicular function could provide the basis for effective, evidence-based strategies for selecting more thermotolerant animals. Excessive heat affects expression of messenger RNA (mRNA) and microRNA (miRNA) in sperm, which have important roles in regulating male fertility. Based on current trends in climate change, the incidence of chronically high temperatures that cause heat stress is expected to increase, posing increasing risks to health and survival of many species. The study of mRNAs and miRNAs can provide valuable insights to select animals that are more resilient to climate change. In addition to the search for more thermotolerant animals, other strategies to mitigate effects of heat stress include reproductive biotechniques and promotion of a better environment.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.