{"title":"A coupled displacement-pressure model for elastic waves induce fluid flow in mature sandstone reservoirs","authors":"M.B. Abdullahi , S.R. Jufar , J.H. Lee , M.D. Le","doi":"10.1016/j.ijrmms.2024.105928","DOIUrl":null,"url":null,"abstract":"<div><div>Elastic (seismic) wave stimulation is considered one of the unconventional enhanced oil recovery (EOR) methods. Increasing water quantity in the high permeability layer of a mature oil reservoir is highly challenging and can significantly decrease the ultimate recovery due to the reservoir heterogeneity. Using seismic waves can be considered low-cost, environmentally friendly, and illuminates the entire reservoir size compared to conventional EOR methods. A numerical model is developed by extending the Quintal approach for seismic attenuation due to wave-induced fluid flow (WIFF) to incorporate capillary pressure in partially saturated porous media and shift undrained boundary conditions to exclude external flow stress for drained boundary conditions. Therefore, the fluid distribution due to the capillary effect makes the developed finite element method (FEM) u-p model more widely applicable for oil recovery in mature reservoirs. A two-layer partially saturated media was subjected to compressive seismic stress at low frequency (3 Hz). The results indicated that the vertical displacement gradients of the bottom and upper layers decline with excitation time for both fully and partially saturated media. On the other hand, partially saturated pore pressure gradients of both the upper and bottom layers have higher amplitudes with excitation time than fully saturated pore pressure gradients due to the influence of capillar pressure. The cumulative crossflow oil volume for 180 days of continuous stimulation was 1176 bbl, 1032 bbl, and 648 bbl in low permeability layers: 200 md, 100 md, and 50 md, respectively. Therefore, the developed model has the potential for field-scale EOR applications. The study also suggests coupling elastic EOR with CO<sub>2</sub> flooding to recover more oil due to increasing fluid mobility and relative permeability to oil in low-permeability reservoirs or tight formations.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"183 ","pages":"Article 105928"},"PeriodicalIF":7.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160924002934","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elastic (seismic) wave stimulation is considered one of the unconventional enhanced oil recovery (EOR) methods. Increasing water quantity in the high permeability layer of a mature oil reservoir is highly challenging and can significantly decrease the ultimate recovery due to the reservoir heterogeneity. Using seismic waves can be considered low-cost, environmentally friendly, and illuminates the entire reservoir size compared to conventional EOR methods. A numerical model is developed by extending the Quintal approach for seismic attenuation due to wave-induced fluid flow (WIFF) to incorporate capillary pressure in partially saturated porous media and shift undrained boundary conditions to exclude external flow stress for drained boundary conditions. Therefore, the fluid distribution due to the capillary effect makes the developed finite element method (FEM) u-p model more widely applicable for oil recovery in mature reservoirs. A two-layer partially saturated media was subjected to compressive seismic stress at low frequency (3 Hz). The results indicated that the vertical displacement gradients of the bottom and upper layers decline with excitation time for both fully and partially saturated media. On the other hand, partially saturated pore pressure gradients of both the upper and bottom layers have higher amplitudes with excitation time than fully saturated pore pressure gradients due to the influence of capillar pressure. The cumulative crossflow oil volume for 180 days of continuous stimulation was 1176 bbl, 1032 bbl, and 648 bbl in low permeability layers: 200 md, 100 md, and 50 md, respectively. Therefore, the developed model has the potential for field-scale EOR applications. The study also suggests coupling elastic EOR with CO2 flooding to recover more oil due to increasing fluid mobility and relative permeability to oil in low-permeability reservoirs or tight formations.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.