Event-triggered finite-time adaptive neural network control for quadrotor UAV with input saturation and tracking error constraints

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE
Changhui Wang, Wencheng Li, Mei Liang
{"title":"Event-triggered finite-time adaptive neural network control for quadrotor UAV with input saturation and tracking error constraints","authors":"Changhui Wang,&nbsp;Wencheng Li,&nbsp;Mei Liang","doi":"10.1016/j.ast.2024.109658","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, an event-triggered finite-time adaptive neural network control tracking strategy is proposed for quadrotor unmanned aerial vehicle (UAV) with input saturation and error constraints. Firstly, the radial basis function neural networks (RBFNNs) are adopted to identify the unknown uncertainty of quadrotor UAV model from the installation errors, gyroscope errors and so on. An auxiliary equation is constructed to deal with input physical saturation from the actuator motors. Additionally, by combining the performance function and error transformation, the issue of error constraint is solved. Based on the Lyapunov stability theory and event-triggered mechanisms, a finite-time adaptive neural network scheme is developed to ensure that the closed-loop quadrotor UAV system is semi-globally practically finite-time stable, and save the computation, resources, and transmission load. Finally, the simulation results illustrate the good tracking performance of quadrotor UAV by using the proposed control strategy.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109658"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824007879","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, an event-triggered finite-time adaptive neural network control tracking strategy is proposed for quadrotor unmanned aerial vehicle (UAV) with input saturation and error constraints. Firstly, the radial basis function neural networks (RBFNNs) are adopted to identify the unknown uncertainty of quadrotor UAV model from the installation errors, gyroscope errors and so on. An auxiliary equation is constructed to deal with input physical saturation from the actuator motors. Additionally, by combining the performance function and error transformation, the issue of error constraint is solved. Based on the Lyapunov stability theory and event-triggered mechanisms, a finite-time adaptive neural network scheme is developed to ensure that the closed-loop quadrotor UAV system is semi-globally practically finite-time stable, and save the computation, resources, and transmission load. Finally, the simulation results illustrate the good tracking performance of quadrotor UAV by using the proposed control strategy.
具有输入饱和度和跟踪误差约束的四旋翼无人飞行器的事件触发式有限时间自适应神经网络控制
本文针对具有输入饱和和误差约束的四旋翼无人飞行器(UAV)提出了一种事件触发有限时间自适应神经网络控制跟踪策略。首先,采用径向基函数神经网络(RBFNN)从安装误差、陀螺仪误差等方面识别四旋翼无人飞行器模型的未知不确定性。此外,还构建了一个辅助方程来处理来自作动器电机的输入物理饱和。此外,通过结合性能函数和误差变换,解决了误差约束问题。基于李亚普诺夫稳定性理论和事件触发机制,开发了一种有限时间自适应神经网络方案,以确保四旋翼无人机闭环系统具有半全局实际有限时间稳定性,并节省计算、资源和传输负载。最后,仿真结果表明,采用所提出的控制策略,四旋翼无人机具有良好的跟踪性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信