Multi-objective optimisation and verification of creep-resistant Ni-base superalloy for electron-beam powder-bed-fusion

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shen Tao, Yansong Li, Hui Peng, Hongbo Guo, Bo Chen
{"title":"Multi-objective optimisation and verification of creep-resistant Ni-base superalloy for electron-beam powder-bed-fusion","authors":"Shen Tao, Yansong Li, Hui Peng, Hongbo Guo, Bo Chen","doi":"10.1016/j.jmst.2024.09.033","DOIUrl":null,"url":null,"abstract":"This paper reports the use of integrated computational alloy design, coupled with a rapid printability screening method, to downselect from a total of 70000 datasets in design space to five candidates in the first step, and then from five to one in the second step. The new Ni-base superalloy with compositions of Ni-5.03Al-2.69Co-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46W-0.05C-0.019B exhibits an optimal balance of density (8.82 g/cm<sup>2</sup>), printability (freezing range of 107 °C), thermal stability (γ′-volume fraction of 50.7% at 980 °C and low <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;M&lt;/mi&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;d&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mo stretchy=\"true\" is=\"true\"&gt;&amp;#x203E;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -896.2 1534 1146.6\" width=\"3.563ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\" transform=\"translate(35,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4D\"></use></g><g is=\"true\" transform=\"translate(970,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-64\"></use></g></g></g><g is=\"true\" transform=\"translate(0,216)\"><use x=\"-70\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use><g transform=\"translate(218.14863656715568,0) scale(2.0554153011920047,1)\"><use xlink:href=\"#MJMAIN-AF\"></use></g><use x=\"1033\" xlink:href=\"#MJMAIN-AF\" y=\"0\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">M</mi><mi is=\"true\" mathvariant=\"normal\">d</mi></msub></mrow><mo is=\"true\" stretchy=\"true\">‾</mo></mover></math></span></span><script type=\"math/mml\"><math><mover is=\"true\"><mrow is=\"true\"><msub is=\"true\"><mi is=\"true\">M</mi><mi mathvariant=\"normal\" is=\"true\">d</mi></msub></mrow><mo stretchy=\"true\" is=\"true\">‾</mo></mover></math></script></span> value) and creep (rupture time of 612 h at 980 °C/120 MPa). The micro-hardness varies mildly from 417.2 ± 18.5 to 434.7 ± 14.6 HV, suggesting good phase stability. This is substantiated by microstructure observations, which revealed the absence of a topologically close-packed phase. Machine-learning tools of the artificial neural network (ANN), random forest, and support vector regression, respectively, were used to predict creep rupture time. The ANN algorithm achieves the highest accuracy in predicting creep life. By recognising the “black box” nature of the ANN, interpretability analysis was conducted using the local interpretable model-agnostic method. The analysis supports that the ANN model truly learned meaningful functional relationships, and thus is judged as reliable. Feature correlation evaluation outcome emphasises the importance of incorporating microstructure-related input features.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"208 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.09.033","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper reports the use of integrated computational alloy design, coupled with a rapid printability screening method, to downselect from a total of 70000 datasets in design space to five candidates in the first step, and then from five to one in the second step. The new Ni-base superalloy with compositions of Ni-5.03Al-2.69Co-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46W-0.05C-0.019B exhibits an optimal balance of density (8.82 g/cm2), printability (freezing range of 107 °C), thermal stability (γ′-volume fraction of 50.7% at 980 °C and low Md value) and creep (rupture time of 612 h at 980 °C/120 MPa). The micro-hardness varies mildly from 417.2 ± 18.5 to 434.7 ± 14.6 HV, suggesting good phase stability. This is substantiated by microstructure observations, which revealed the absence of a topologically close-packed phase. Machine-learning tools of the artificial neural network (ANN), random forest, and support vector regression, respectively, were used to predict creep rupture time. The ANN algorithm achieves the highest accuracy in predicting creep life. By recognising the “black box” nature of the ANN, interpretability analysis was conducted using the local interpretable model-agnostic method. The analysis supports that the ANN model truly learned meaningful functional relationships, and thus is judged as reliable. Feature correlation evaluation outcome emphasises the importance of incorporating microstructure-related input features.

Abstract Image

用于电子束粉末床融合的抗蠕变镍基超级合金的多目标优化与验证
本文报告了综合计算合金设计与快速可印刷性筛选方法的使用情况,第一步从设计空间中的总共 7 万个数据集中向下选择出五个候选合金,第二步再从五个候选合金中选择出一个。新型镍基超级合金的成分为:Ni-5.03Al-2.69Co-5.63Cr-0.04Hf-1.91Mo-2.36Re-3.32Ta-0.57Ti-8.46W-0.05C-0.019B,在密度(8.82 g/cm2)、可印刷性(凝固范围为 107 °C)、热稳定性(980 °C 时γ′体积分数为 50.7%,Md‾Md‾值较低)和蠕变性(980 °C/120 MPa 时断裂时间为 612 h)达到了最佳平衡。显微硬度在 417.2 ± 18.5 至 434.7 ± 14.6 HV 之间轻微变化,表明相稳定性良好。微观结构观察也证实了这一点,观察结果表明不存在拓扑紧密堆积相。在预测蠕变断裂时间时,分别使用了人工神经网络(ANN)、随机森林和支持向量回归等机器学习工具。人工神经网络算法预测蠕变寿命的准确率最高。由于认识到 ANN 的 "黑箱 "性质,我们采用了局部可解释模型失真法进行了可解释性分析。分析结果表明,ANN 模型真正学习到了有意义的功能关系,因此被判定为可靠。特征相关性评估结果强调了纳入微观结构相关输入特征的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信