{"title":"Deep-learning classification of teat-end conditions in Holstein cattle","authors":"Miho Takahashi, Akira Goto, Keiichi Hisaeda, Yoichi Inoue, Toshio Inaba","doi":"10.1016/j.rvsc.2024.105434","DOIUrl":null,"url":null,"abstract":"<div><div>As a means of preventing mastitis, deep learning for classifying teat-end conditions in dairy cows has not yet been optimized. By using 1426 digital images of dairy cow udders, the extent of teat-end hyperkeratosis was assessed using a four-point scale. Several deep-learning networks based on the transfer learning approach have been used to evaluate the conditions of the teat ends displayed in the digital images. The images of the teat ends were partitioned into training (70 %) and validation datasets (15 %); afterwards, the network was evaluated based on the remaining test dataset (15 %). The results demonstrated that eight different ImageNet models consistently achieved high accuracy (80.3–86.6 %). The areas under the receiver operating characteristic curves for the normal, smooth, rough, and very rough classification scores in the test data set ranged from 0.825 to 0.999. Thus, improved accuracy in image-based classification of teat tissue conditions in dairy cattle using deep learning requires more training images. This method could help farmers reduce the risks of intramammary infections, decrease the use of antimicrobials, and better manage costs associated with mastitis detection and treatment.</div></div>","PeriodicalId":21083,"journal":{"name":"Research in veterinary science","volume":"180 ","pages":"Article 105434"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in veterinary science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034528824003011","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
As a means of preventing mastitis, deep learning for classifying teat-end conditions in dairy cows has not yet been optimized. By using 1426 digital images of dairy cow udders, the extent of teat-end hyperkeratosis was assessed using a four-point scale. Several deep-learning networks based on the transfer learning approach have been used to evaluate the conditions of the teat ends displayed in the digital images. The images of the teat ends were partitioned into training (70 %) and validation datasets (15 %); afterwards, the network was evaluated based on the remaining test dataset (15 %). The results demonstrated that eight different ImageNet models consistently achieved high accuracy (80.3–86.6 %). The areas under the receiver operating characteristic curves for the normal, smooth, rough, and very rough classification scores in the test data set ranged from 0.825 to 0.999. Thus, improved accuracy in image-based classification of teat tissue conditions in dairy cattle using deep learning requires more training images. This method could help farmers reduce the risks of intramammary infections, decrease the use of antimicrobials, and better manage costs associated with mastitis detection and treatment.
期刊介绍:
Research in Veterinary Science is an International multi-disciplinary journal publishing original articles, reviews and short communications of a high scientific and ethical standard in all aspects of veterinary and biomedical research.
The primary aim of the journal is to inform veterinary and biomedical scientists of significant advances in veterinary and related research through prompt publication and dissemination. Secondly, the journal aims to provide a general multi-disciplinary forum for discussion and debate of news and issues concerning veterinary science. Thirdly, to promote the dissemination of knowledge to a broader range of professions, globally.
High quality papers on all species of animals are considered, particularly those considered to be of high scientific importance and originality, and with interdisciplinary interest. The journal encourages papers providing results that have clear implications for understanding disease pathogenesis and for the development of control measures or treatments, as well as those dealing with a comparative biomedical approach, which represents a substantial improvement to animal and human health.
Studies without a robust scientific hypothesis or that are preliminary, or of weak originality, as well as negative results, are not appropriate for the journal. Furthermore, observational approaches, case studies or field reports lacking an advancement in general knowledge do not fall within the scope of the journal.