Jil Wendt, Antonia Neubauer, Dennis M. Hedderich, Benita Schmitz-Koep, Sevilay Ayyildiz, David Schinz, Rebecca Hippen, Marcel Daamen, Henning Boecker, Claus Zimmer, Dieter Wolke, Peter Bartmann, Christian Sorg, Aurore Menegaux
{"title":"Human Claustrum Connections: Robust In Vivo Detection by DWI-Based Tractography in Two Large Samples","authors":"Jil Wendt, Antonia Neubauer, Dennis M. Hedderich, Benita Schmitz-Koep, Sevilay Ayyildiz, David Schinz, Rebecca Hippen, Marcel Daamen, Henning Boecker, Claus Zimmer, Dieter Wolke, Peter Bartmann, Christian Sorg, Aurore Menegaux","doi":"10.1002/hbm.70042","DOIUrl":null,"url":null,"abstract":"<p>Despite substantial neuroscience research in the last decade revealing the claustrum's prominent role in mammalian forebrain organization, as evidenced by its extraordinarily widespread connectivity pattern, claustrum studies in humans are rare. This is particularly true for studies focusing on claustrum connections. Two primary reasons may account for this situation: First, the intricate anatomy of the human claustrum located between the external and extreme capsule hinders straightforward and reliable structural delineation. In addition, the few studies that used diffusion-weighted-imaging (DWI)-based tractography could not clarify whether in vivo tractography consistently and reliably identifies claustrum connections in humans across different subjects, cohorts, imaging methods, and connectivity metrics. To address these issues, we combined a recently developed deep-learning-based claustrum segmentation tool with DWI-based tractography in two large adult cohorts: 81 healthy young adults from the human connectome project and 81 further healthy young participants from the Bavarian longitudinal study. Tracts between the claustrum and 13 cortical and 9 subcortical regions were reconstructed in each subject using probabilistic tractography. Probabilistic group average maps and different connectivity metrics were generated to assess the claustrum's connectivity profile as well as consistency and replicability of tractography. We found, across individuals, cohorts, DWI-protocols, and measures, consistent and replicable cortical and subcortical ipsi- and contralateral claustrum connections. This result demonstrates robust in vivo tractography of claustrum connections in humans, providing a base for further examinations of claustrum connectivity in health and disease.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"45 14","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70042","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Despite substantial neuroscience research in the last decade revealing the claustrum's prominent role in mammalian forebrain organization, as evidenced by its extraordinarily widespread connectivity pattern, claustrum studies in humans are rare. This is particularly true for studies focusing on claustrum connections. Two primary reasons may account for this situation: First, the intricate anatomy of the human claustrum located between the external and extreme capsule hinders straightforward and reliable structural delineation. In addition, the few studies that used diffusion-weighted-imaging (DWI)-based tractography could not clarify whether in vivo tractography consistently and reliably identifies claustrum connections in humans across different subjects, cohorts, imaging methods, and connectivity metrics. To address these issues, we combined a recently developed deep-learning-based claustrum segmentation tool with DWI-based tractography in two large adult cohorts: 81 healthy young adults from the human connectome project and 81 further healthy young participants from the Bavarian longitudinal study. Tracts between the claustrum and 13 cortical and 9 subcortical regions were reconstructed in each subject using probabilistic tractography. Probabilistic group average maps and different connectivity metrics were generated to assess the claustrum's connectivity profile as well as consistency and replicability of tractography. We found, across individuals, cohorts, DWI-protocols, and measures, consistent and replicable cortical and subcortical ipsi- and contralateral claustrum connections. This result demonstrates robust in vivo tractography of claustrum connections in humans, providing a base for further examinations of claustrum connectivity in health and disease.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.