Quantized kernel recursive q-Rényi-like algorithm

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenwen Zhou , Yanmin Zhang , Chunlong Huang , Sergey V. Volvenko , Wei Xue
{"title":"Quantized kernel recursive q-Rényi-like algorithm","authors":"Wenwen Zhou ,&nbsp;Yanmin Zhang ,&nbsp;Chunlong Huang ,&nbsp;Sergey V. Volvenko ,&nbsp;Wei Xue","doi":"10.1016/j.dsp.2024.104790","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces the kernel recursive <em>q</em>-Rényi-like (KR<em>q</em>RL) algorithm, based on the <em>q</em>-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KR<em>q</em>RL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KR<em>q</em>RL (QKR<em>q</em>RL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKR<em>q</em>RL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKR<em>q</em>RL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKR<em>q</em>RL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104790"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004159","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KRqRL (QKRqRL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKRqRL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKRqRL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKRqRL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance.
量化核递归 q-Rényi-like 算法
本文介绍了基于 q-Rényi 核函数和核递归最小二乘法(KRLS)的核递归 q-Rényi-like 算法(KRqRL)。为了降低 KRqRL 算法的计算复杂度和内存需求,本文采用了在线矢量量化(VQ)方法,将网络大小量化为编码本大小,从而形成了量化 KRqRL(QKRqRL)算法。本文详细分析了 QKRqRL 算法的收敛性和计算复杂度。在仿真实验中,每种算法的网络规模都缩小到原来的 25%。在非高斯噪声条件下,从收敛速度、预测误差和计算时间等方面评估了 QKRqRL 算法的性能。最后,利用太阳黑子数据对 QKRqRL 算法进行了进一步验证,证明了其卓越的稳定性和在线预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Digital Signal Processing
Digital Signal Processing 工程技术-工程:电子与电气
CiteScore
5.30
自引率
17.20%
发文量
435
审稿时长
66 days
期刊介绍: Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal. The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as: • big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信