Zhiqiang Hou , Minjie Qu , Minjie Cheng , Sugang Ma , Yunchen Wang , Xiaobao Yang
{"title":"EFRNet: Edge feature refinement network for real-time semantic segmentation of driving scenes","authors":"Zhiqiang Hou , Minjie Qu , Minjie Cheng , Sugang Ma , Yunchen Wang , Xiaobao Yang","doi":"10.1016/j.dsp.2024.104791","DOIUrl":null,"url":null,"abstract":"<div><div>In the semantic segmentation field, the dual-branch structure is a highly effective segmentation model. However, the frequent downsampling in the semantic branch reduces the accuracy of features expression with increasing network depth, resulting in suboptimal segmentation performance. To address the above issues, this paper proposes a real-time semantic segmentation network based on Edge Feature Refinement (Edge Feature Refinement Network, EFRNet). A dual-branch structure is used in the encoder. To enhance the accuracy of deep features expression in the network, an edge refinement module (ERM) is designed in the dual-branch interaction stage to refine the features of the two branches and improve segmentation accuracy. In the decoder, a Bilateral Channel Attention (BCA) module is designed, which is used to extract detailed information and semantic information of features at different levels of the network, and gradually restore small target features. To capture multi-scale context information, we introduce a Multi-scale Context Aggregation Module (MCAM), which efficiently integrates multi-scale information in a parallel manner. The proposed algorithm has experimented on Cityscapes and CamVid datasets, and reaches 78.8% mIoU and 79.6% mIoU, with speeds of 81FPS and 115FPS, respectively. Experimental results show that the proposed algorithm effectively improves segmentation performance while maintaining a high segmentation speed.</div></div>","PeriodicalId":51011,"journal":{"name":"Digital Signal Processing","volume":"156 ","pages":"Article 104791"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1051200424004160","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In the semantic segmentation field, the dual-branch structure is a highly effective segmentation model. However, the frequent downsampling in the semantic branch reduces the accuracy of features expression with increasing network depth, resulting in suboptimal segmentation performance. To address the above issues, this paper proposes a real-time semantic segmentation network based on Edge Feature Refinement (Edge Feature Refinement Network, EFRNet). A dual-branch structure is used in the encoder. To enhance the accuracy of deep features expression in the network, an edge refinement module (ERM) is designed in the dual-branch interaction stage to refine the features of the two branches and improve segmentation accuracy. In the decoder, a Bilateral Channel Attention (BCA) module is designed, which is used to extract detailed information and semantic information of features at different levels of the network, and gradually restore small target features. To capture multi-scale context information, we introduce a Multi-scale Context Aggregation Module (MCAM), which efficiently integrates multi-scale information in a parallel manner. The proposed algorithm has experimented on Cityscapes and CamVid datasets, and reaches 78.8% mIoU and 79.6% mIoU, with speeds of 81FPS and 115FPS, respectively. Experimental results show that the proposed algorithm effectively improves segmentation performance while maintaining a high segmentation speed.
期刊介绍:
Digital Signal Processing: A Review Journal is one of the oldest and most established journals in the field of signal processing yet it aims to be the most innovative. The Journal invites top quality research articles at the frontiers of research in all aspects of signal processing. Our objective is to provide a platform for the publication of ground-breaking research in signal processing with both academic and industrial appeal.
The journal has a special emphasis on statistical signal processing methodology such as Bayesian signal processing, and encourages articles on emerging applications of signal processing such as:
• big data• machine learning• internet of things• information security• systems biology and computational biology,• financial time series analysis,• autonomous vehicles,• quantum computing,• neuromorphic engineering,• human-computer interaction and intelligent user interfaces,• environmental signal processing,• geophysical signal processing including seismic signal processing,• chemioinformatics and bioinformatics,• audio, visual and performance arts,• disaster management and prevention,• renewable energy,